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A Simple Problem …
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Who is the painter ?
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A Simple Problem … for a Human !

Da Vinci

Botero

?

Who is the painter ?

I Human capacity to learn from few

examples
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Image Classification

Botero

Botero

Botero
Da Vinci

Da Vinci
Da Vinci

Features

I φ encoding function parametrized by θ

I Linear classifiers w (green line) separate each class
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Learning from images

Dtrain := {(x1, y1), . . . , (xN , yN)} ∼ P (X,Y)

θ̂, ŵ := arg min
θ,w

N∑
i=1

L ( yi , xi ; θ,w)

Model parameters

Loss function
Label

Data points

I Learn parameters θ̂ and ŵ minimizing loss function L given data points xi and labels yi.
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Practical Data Conditions

Da Vinci

Botero

Monet

Expectations

I Many-Shot Learning: A lot of data and

labels

I But labeling data is costly !

Da Vinci

Botero

?

Reality

I FewAnnotation Learning (FAL): A lot of

data and few labels

I Few Shot Learning (FSL): Few data and

labels
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General Frameworks

Pretraining Supervised
Fine-Tuning

Semi-Supervised
Learning

Meta-Learning

FSL FAL
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Terminology
Meta-Learning 101

What is Meta-Learning ?

I Meta-Training: solve a set of source tasks.

I Meta-Testing: use knowledge from meta-training to solve previously unseen tasks

more efficiently.

How is it related to Few-Shot Learning ?

The Meta-learner learns to learn a new task with few shots.
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Introducing episodes
Meta-Learning 101

Meta-
Training

Meta-
Testing

Training Testing
Support Set Query Set

Episode 𝑖

Inner level

Outer 
level

N-way k-shot episode: task with N different classes and k images for each class.
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Meta-Learning Problem Formulation
Meta-Learning 101

Data distributions:

∀t ∈ [1, . . . , N ], Tt ∼ P (T ), Tt := St ∪Qt

Drawing N episodes

Support sets Query sets

Inner-level:

θ̂t, ŵt = arg min
θ,w

∑
(x,y)∈St

Linner (x, y; θ,w)

Parameters specialized to each episode

Inner loss function

Outer-level:

θ̂, ŵ = arg min
θ,w

N∑
t=1

∑
(x,y)∈Qt

Louter (x, y; θ̂t, ŵt)

Initialization for new sets of episodes

Outer loss function

Task-specific parameters learned
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Initialization for new sets of episodes

Outer loss function

Task-specific parameters learned

Q. Bouniot On FAL and Non-linearity 12/61



Meta-Learning methods
Meta-Learning 101

Metric-based methods (ProtoNet 1)

I Support samples for each class i fused
into prototypes ci.

I Probability distribution using inverse of

distances to prototypes.

Gradient-based methods (MAML 2)

I End-to-end bi-level optimization

through gradient descent.

1Jake Snell, Kevin Swersky, and Richard S. Zemel. “Prototypical Networks for Few-shot Learning”. In: NeurIPS. 2017

2Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks”. In: ICML. 2017
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Introduction to MTR
Multi-Task Representation Learning Theory

| 24Quentin Bouniot, Ievgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard | GdR ISIS | 26/11/2021

PRELIMINARY KNOWLEDGE

Training

| 25Quentin Bouniot, Ievgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard | GdR ISIS | 26/11/2021

PRELIMINARY KNOWLEDGE

Training

Testing

Goal: Minimize excess risk ER = L(φ̂, ŵT+1)− L(φ∗,w∗
T+1),

I True risk L I Optimal representation φ∗ I w∗
T+1 ideal target linear predictor.

Q. Bouniot On FAL and Non-linearity 14/61



Introduction to MTR
Multi-Task Representation Learning Theory

| 24Quentin Bouniot, Ievgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard | GdR ISIS | 26/11/2021

PRELIMINARY KNOWLEDGE

Training

| 25Quentin Bouniot, Ievgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard | GdR ISIS | 26/11/2021

PRELIMINARY KNOWLEDGE

Training

Testing

Goal: Minimize excess risk ER = L(φ̂, ŵT+1)− L(φ∗,w∗
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Link with Meta-Learning
Multi-Task Representation Learning Theory

| 27Quentin Bouniot, Ievgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard | GdR ISIS | 26/11/2021

PRELIMINARY KNOWLEDGE

Goal: Minimize excess risk ER = ℒ 𝜙, ෝw𝑇+1 − ℒ 𝜙∗, w𝑇+1
∗

► True risk ℒ ► Optimal weights 𝜙∗ ► w𝑇+1
∗ ideal target linear predictor

Goal: Minimize excess risk ER = L(φ̂, ŵT+1)− L(φ∗,w∗
T+1),

I True risk L I Optimal representation φ∗ I w∗
T+1 ideal target linear predictor.
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Few-Shot Multi-Task Learning Theory
Multi-Task Representation Learning Theory

Few-Shot Learning bound3

If assumptions are satisfied:

ER(φ,wT+1) ≤ O
(

1
n1T

+ 1
n2

)
Number of samples per source tasks Number of source tasks

Number of samples for target task

XXX All source and target data are useful to decrease the bound of excess risk.

XXX Increasing either T or n1 have an effect on the bound.

3Simon S. Du et al. “Few-Shot Learning via Learning the Representation, Provably”. In: ICLR. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. “Provable Meta-Learning of

Linear Representations”. In: arXiv. 2020.
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Important Assumptions
Multi-Task Representation Learning Theory

Assumption 1: Diversity of the source tasks4

Condition Number κ(W∗) = σmax(W∗)
σmin(W∗) should not increasewith T .

I Optimal predictors W∗ = [w∗
1, . . . ,w∗

T ] cover all the directions evenly

Assumption 2: Constant classification margin4

Norm of predictors ‖w∗
t ‖t∈J1,T K should not increasewith T

4Simon S. Du et al. “Few-Shot Learning via Learning the Representation, Provably”. In: ICLR. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. “Provable Meta-Learning of

Linear Representations”. In: arXiv. 2020.
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Illustration: Violated Assumptions
Multi-Task Representation Learning Theory

𝜅 ≫ 1

𝜎𝑚𝑖𝑛𝜎𝑚𝑎𝑥

Source tasks

Target tasks

𝐖 = [𝐰1, 𝐰2, 𝐰3]

𝐰1

𝐰2

𝐰3

××× Linear predictors cover only part of the space or over-specialize to the tasks
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Illustration: Satisfied Assumptions
Multi-Task Representation Learning Theory

𝐰1

𝐰𝟐

𝐰3

𝜅 ≈ 1

𝜎𝑚𝑖𝑛𝜎𝑚𝑎𝑥

Source tasks

𝐖 = [𝐰1, 𝐰2, 𝐰3]

𝟏/||𝐰3||

𝟏/||𝐰3||

Target tasks

XXX Assumption 1 makes sure that linear predictors are complementary

XXX Assumption 2 avoids under- or over-specialization to the tasks

Q. Bouniot On FAL and Non-linearity 19/61



What Happens in Practice ?
From Theory to Practice

Idea:

I Verify assumptions 1 and 2 for meta-learning algorithms.

How ?

I Monitor condition number κ(WN ) and norm of the predictors ‖WN‖F for the lastN tasks

Q. Bouniot On FAL and Non-linearity 20/61



What Happens in Practice ?
From Theory to Practice
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Monitoring the norm

XXX ProtoNet naturally verifies the assumptions

××× MAML does not verify the assumptions
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Why Does it Happen ?
From Theory to Practice

Case of ProtoNet:

I Theorem (informal)

If all prototypes are normalized,

then all ProtoNet encoders verify Assumption 1.

XXX Norm minimization is enough to obtain well-behaved condition number for ProtoNet.

Q. Bouniot On FAL and Non-linearity 22/61



Why Does it Happen ?
From Theory to Practice

Case of MAML:

I Theorem (informal)

At iteration i, if σmin = 0 for last two tasks,

then κ(Ŵi+1
2 ) ≥ κ(Ŵi

2).

XXX The condition number for MAML can increase between iterations.
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What canwe do ?
From Theory to Practice

Ensuring Assumption 1: Spectral regularization

κ(WN ) = σmax(WN )
σmin(WN )

XXX Regularizing with κ(WN ) leads to a better coverage of the searched space

Ensuring Assumption 2: Norm regularization or normalization for linear predictors

XXX Normalizing predictors ensure constant margin that does not changewith T

Q. Bouniot On FAL and Non-linearity 24/61
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Experimental Results
From Theory to Practice

Experiments on mini-ImageNet 5-way 1-shot
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XXX Our regularization and normalization have the intended effects.
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Experimental Results
From Theory to Practice
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XXX Statistically significant improvements with our regularization and normalization.

XXX Better generalizationwhen the assumptions are not verified naturally.

Q. Bouniot On FAL and Non-linearity 26/61



Take Home Message I

Improving Few-Shot Learning Through Multi-Task Representation Learning Theory5

XXX Connection between Meta-Learning and Multi-Task Representation Learning Theory

XXX Explaining why some meta-learning methods naturally fulfill theoretical assumptions

of the best learning bounds.

XXX We prove that it is possible to enforce the assumptions and propose practical ways

which leads to significant performance improvements.

5Quentin Bouniot, Ievgen Redko, Romaric Audigier, et al. “Improving Few-Shot Learning Through Multi-task Representation Learning Theory”. In: ECCV. 2022.
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Object Detectors in a Nutshell
Motivations and Background

Detec�on
HeadsBackbone

Object Detector

Cls

Loc

I Detectors composed of backbone model and detection-specific heads.

I Predict class (Cls) and location (Loc) for each objects in an image.
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Setting considered
Motivations and Background

Unsupervised
Pretraining

Supervised
Fine-Tuning
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Pretraining in Object Detection
Motivations and Background

Overall Pretraining

(a)6

Detec�on 
Heads

Back 
bone

XXX Consistency

××× Costly

(b) Our Approach

Detec�on 
Heads

Back 
bone

XXX Consistency

XXX Less costly

(c)7

Detec�on 
Heads

Back 
bone

××× Discrepancy

XXX Less costly

6Fangyun Wei et al. “Aligning pretraining for detection via object-level contrastive learning”. In: NeurIPS. 2021

7Zhigang Dai et al. “Up-DETR: Unsupervised pre-training for object detection with transformers”. In: CVPR. 2021; Amir Bar et al. “Detreg: Unsupervised pretraining with region

priors for object detection”. In: CVPR. 2022
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Transformer-based Detectors
Motivations and Background

Backbone
Transformer
Encoder-
Decoder

Object
proposals

I Transformer-based detectors generates N proposals� k objects in images.
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Transformer-based Detectors
Motivations and Background

Backbone

Object
proposals

Transformer
Encoder-
Decoder

I Transformer-based detectors generates N proposals� k objects in images.

Contribution: Contrastive learning between proposals.
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Box
MLP

Proj.
MLP

Teacher

Back
bone

Transformer
Detector

Object
Proposals

Weak view

Features

Boxes
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Student

EMA

Stop
gradients

Proposal
Matching

Box
MLP

Box
MLP

Proj.
MLP

Back
bone

Transformer
Detector

Teacher

Back
bone

Transformer
Detector

Object
Predictions

Object
Proposals

Weak view

Strong view

Features

Boxes

Features

Boxes

I Object Proposals from Teacher are matched with Predictions from Student.
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Unsupervised Proposal Matching

σ̂propi = arg minσ∈SN

∑N
j=1 Lprop_match(y(i,j), ŷ(i,σ(j)))

Permutations ofN elements

Object Proposals

Object Predictions

I Proposal j found by the teacher associated to prediction σ̂propi (j) of the student.

Matching Cost Lprop_match depends on:

I features similarity I L1 loss of box coordinates I generalized IoU loss
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Naive way

Strong view

Weak view

××× Close proposals considered as negative examples.
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Localization-aware Contrastive loss

Strong view

Weak view

XXX Overlapping proposals are considered as positive examples.
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Soft Contrastive Estimation (SCE) loss function8

p′(in,jm) =
1i 6=n1j 6=m exp(z(i,j) · z(n,m)/τt)∑Nb

k=1

∑N
l=1 1i6=k1j 6=l exp(z(i,j) · z(k,l)/τt)

Relations between proposals Temperature

Features of Object Proposals

p′′(in,jm) =
exp(z(i,j) · ẑ(n,m)/τ)∑Nb

k=1

∑N
l=1 exp(z(i,j) · ẑ(k,l)/τ)

Contrastive aspect between predictions and proposals

Features of Object Predictions

8Julien Denize et al. “Similarity contrastive estimation for self-supervised soft contrastive learning”. In: WACV. 2023.
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k=1

∑N
l=1 exp(z(i,j) · ẑ(k,l)/τ)
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Localization-aware similarity distribution

wLoc
(in,jm) = λSCE · 1i=n1IoUi(j,m)≥δ + (1− λSCE) · p′(in,jm)

IoU between proposals in same image above threshold δ

Localized SCE (LocSCE) function

LLocSCE(y, ŷ, σ̂prop) = − 1

NbN

Nb∑
i=1

Nb∑
n=1

N∑
j=1

N∑
m=1

wLoc
(in,jm) log(p′′(in,jσ̂prop

n (m)))

Effective batch size
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Avoiding Collapse
Proposal Selection Contrast (ProSeCo)

Student Box
MLP

Proj.
MLP

Box 
Matching

Back
bone

Transformer
Detector

Selective
Search

Object
Predictions

Weak view

Strong view

Features

Boxes

I Student predictions must match boxes

randomly selected from Selective Search9

outputs.

9Jasper RR Uijlings et al. “Selective search for object recognition”. In: IJCV. 2013.
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Full pretraining procedure
Proposal Selection Contrast (ProSeCo)

Student

EMA ℒ𝐿𝑜𝑐𝑆𝐶𝐸

Stop
gradients

Proposal
Matching

Box
MLP

Box
MLP

Proj.
MLP

ℒ𝑐𝑜𝑜𝑟𝑑
+

ℒ𝑔𝑖𝑜𝑢

Box 
Matching

Back
bone

Transformer
Detector

Teacher

Back
bone

Transformer
Detector

Selective
Search

Object
Predictions

Object
Proposals

Weak view

Strong view

Features

Boxes

Features

Boxes

I Full pretraining procedure with both contrastive and localization learning.
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Pretraining on ImageNet, finetuning on Mini-COCO
Experimental Results

Pretraining Arch.
Mini-COCO

1% (1.2k) 5% (5.9k) 10% (11.8k)

Supervised Trans. 13.0 23.6 28.6

SwAV10 Trans. 13.3 24.5 29.5

SCRL11 Trans. 16.4 26.2 30.6

DETReg12 Trans. 15.9 26.1 30.9

Supervised Conv. – 19.4 24.7

SoCo∗13 Conv. – 26.8 31.1

ProSeCo (Ours) Trans. 18.0 28.8 32.8

10Mathilde Caron et al. “Unsupervised learning of visual features by contrasting cluster assignments”. In: NeurIPS. 2020.

11Byungseok Roh et al. “Spatially consistent representation learning”. In: CVPR. 2021.

12Amir Bar et al. “Detreg: Unsupervised pretraining with region priors for object detection”. In: CVPR. 2022.

13Fangyun Wei et al. “Aligning pretraining for detection via object-level contrastive learning”. In: NeurIPS. 2021.
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Finetuning on other datasets
Experimental Results

Pretraining
FSOD-test FSOD-train PASCAL VOC Mini-VOC

100% (11k) 100% (42k) 100% (16k) 5% (0.8k) 10% (1.6k)

Supervised 39.3 42.6 59.5 33.9 40.8

DETReg14 43.2 43.3 63.5 43.1 48.2

ProSeCo (Ours) 46.6 47.2 65.1 46.1 51.3

XXX Improvements of about 2 points over SOTA on all datasets considered.

14Amir Bar et al. “Detreg: Unsupervised pretraining with region priors for object detection”. In: CVPR. 2022.
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Take Home Message II

We propose ProSeCo, a Proposal-Contrastive Pretraining strategy for Object Detection

with Transformers.15

XXX Leverage high number of Object Proposals for Proposal-Contrastive Learning.

XXX Our ProSeCo improves performancewhen training with limited labeled data.

XXX Consistencywith object-level features is important for Object Detection.

XXX Location information helps for Proposal-Contrastive learning.

15Quentin Bouniot, Romaric Audigier, et al. “Proposal-Contrastive Pretraining for Object Detection from Fewer Data”. In: ICLR. 2023.
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Outline

1 Introduction

2 Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning

3 Proposal-Contrastive Pretraining for Object Detection from Fewer Data

4 Understanding Deep Neural Networks Through the Lens of their Non-Linearity

Quantifying Non-linearity

Journey through DNNs History

Additional Results

5 Perspectives

Q. Bouniot On FAL and Non-linearity 46/61



Motivations

Non-linearity is at the heart of DNNs

I Universal function approximators thanks to non-linearity.

I Mainly introduced through activation functions.

No such notion of quantifying non-linearity exists in the literature.

I Research mainly focus on quantifying expressive power of DNNs.

Goal: Measure non-linearity from data distribution
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Quantifying Non-Linearity
General idea

Measure non-linearity as lack of linearity through Optimal Transport (OT)

I We know the closed-form solution of the OT problem for random variables following

normal distributions.

I For any X and Y, if Y = TX with T PSD, then the solution of OT problem is exactly the

one of their normal approximations.

I We obtain a bound on the difference of the two OT problems.

I We can define the affinity score using this bound.
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Quantifying Non-Linearity
Affinity Score

ρaff(X,Y) = 1− W2(TaffX,Y)
√
2Tr[Σ(Y)]

1
2

I ρaff describes how much Y differs from being a PSD affine transformation of X.

I 0 ≤ ρaff(X,Y ) ≤ 1, and ρaff(X,Y ) = 1 ⇔ Y = TaffX .

2-Wasserstein distance OT map between normal approximations

Covariance of Y
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Quantifying Non-Linearity
First Examples

Affinity scores over input domain of activation functions
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I X ∼ N (µ, σ), with µ sliding over the domain and multiple σ for each µ.

I ρaff(X, f(X)) for popular activation functions f .

I Activation functions can be characterized by the lowest score achieved and the range of

non-linearity.
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Non-linearity signature
Journey through DNNs History

Notations

I Define a neural network N as a composition of layers Fi:

N = FL � ...� Fi ...� F1 =
⊙

k=1,...,L Fk where � stands for a composition.

I Each layer Fi is a function Fi : Rh×w×c → Rh×w×c whose outputs Fi(Xi) are inputs of
the following layer Fi+1. Usual Fi include convolution, feedforward, pooling or

activation functions.

I Define a finite set of common activation functions A := {σ|σ : Rh×w×c → Rh×w×c}

I Let r be a dimensionality reduction function such that r : Rh×w×c → Rc

Non-linearity signature of N given X:

ρaff(N ;X) = {ρaff(r(Xi), σ(r(Xi))),∀σ ∈ Fi ∩ A, i ∈ {1, . . . , L}}
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Early Convnets
Journey through DNNs History
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I Early convnets had tiny variations in non-linearity propagation.
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Deeper Networks
Journey through DNNs History
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I Different color codes stand for distinct activation functions appearing repeatedly in the

architecture (e.g. every first ReLU in residual blocks for ResNet).

I Deeper networks with residual connections have a shaking effect in their non-linearity

signatures.
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Vision Transformers
Journey through DNNs History
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I Activation functions only present in their MLP blocks.

I Highly non-linear compared to convnets.
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Correlation with Accuracy
Additional Results

60 70 80 90
Accuracy
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 Correlation: -0.96

I We separate architectures into semantically meaningful groups: Traditional

architectures (Alexnet, VGGs, ResNets and DenseNets) and ViTs.

I Confirms shaking effect for traditional models.

I Clear trend toward more non-linearity in ViTs.
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Unique Measure
Additional Results
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I No other criterion consistently correlates with the affinity score across 33

architectures used in our test.
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Clustering of architectures
Additional Results
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I Clustering of the architectures using the pairwise DTW distances between

non-linearity signatures.
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Take-Home Message III

Understanding Deep Neural Networks Through the Lens of their Non-Linearity16

XXX First theoretical sound tool to measure non-linearity in DNNs

XXX Different developments in Deep Learning can be understood through the prism of

non-linearity

XXX Variety of potential applications

16Quentin Bouniot, Ievgen Redko, Anton Mallasto, et al. “Understanding deep neural networks through the lens of their non-linearity”. In: arXiv preprint arXiv:2310.11439 (2023).
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Outline

1 Introduction

2 Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning

3 Proposal-Contrastive Pretraining for Object Detection from Fewer Data

4 Understanding Deep Neural Networks Through the Lens of their Non-Linearity

5 Perspectives
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Perspectives

Towards bridging the gap between MTR theory and Meta-learning in practice.

I Take into account similarity between source and test tasks for cross-domain

generalization.

Towards leveraging unlabeled data for Object Detection using Transformers.

I Improvements from self- and semi-supervision are less significant than for

convolutional methods. Considermore suited unsupervised tasks ?

Towards efficient adaptation through non-linearity analysis

I Comparing datasets through distance between non-linearity signatures

I Regularization of non-linearity signatures during training.
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Thank you for listening !

Do not hesitate to contact me if you have questions.
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Experimental Results

| 56Quentin Bouniot, Ievgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard | GdR ISIS | 26/11/2021

EXPERIMENTAL RESULTS:
CROSS-DOMAIN

5-way
1-shot

Guo et al. 2020.
A Broader Study of Cross-Domain Few-Shot Learning.
In ECCV 2020

Guo et al., “A Broader Study of Cross-Domain Few-Shot Learning”
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××× Improvement does not translate to cross-domain formetric-based methods.

XXX Gradient-based methods keep their accuracy gains.
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Few-Shot Learning Setting
Background in Object Detection

How do object detectors handle data scarcity ?

Method Arch.
Mini-COCO

0.5% (590) 1% (1.2k) 5% (5.9k) 10% (11.8k)

FCOS17 Conv. 5.42 ± 0.01 8.43 ± 0.03 17.01 ± 0.01 20.98 ± 0.01

FRCNN + FPN18 Conv. 6.83 ± 0.15 9.05 ± 0.16 18.47 ± 0.22 23.86 ± 0.81

Def. DETR19 Trans. 8.95 ± 0.51 12.96 ± 0.08 23.59 ± 0.21 28.55 ± 0.08

I Performance on COCO with different percentages of labeled training data.

I Def. DETR stronger than FRCNN + FPN and FCOSwith fewer labeled data.

17Zhi Tian et al. “Fcos: Fully convolutional one-stage object detection”. In: ICCV. 2019.

18Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with region proposal networks”. In: NeurIPS. 2015; Tsung-Yi Lin et al. “Feature pyramid networks for object

detection”. In: CVPR. 2017.

19Xizhou Zhu et al. “Deformable DETR: Deformable Transformers for End-to-End Object Detection”. In: ICLR. 2021.
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Object Detection 101
Background in Object Detection

Transformer-based methods (e.g., DETR20)

Backbone

Detec�on Heads

Cls

Loc

Transformer
Encoder-
Decoder

I Simpler overall architecture, without hand-crafted heuristics.

I Increasingly popular architecture and strong performance with few data.

20Nicolas Carion et al. “End-to-end object detection with transformers”. In: ECCV. 2020.
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Classical Contrastive Learning
Unsupervised Pretraining for Object Detection with Fewer Annotation

Features

Push closer

Push away

I Push closer positive examples and push away negative examples.
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Ablation Studies

Pretraining Dataset mAP

ProSeCo w/ SwAV COCO 27.4

ProSeCo w/ SwAV IN 27.8

DETReg w/ SCRL IN 28.0

ProSeCo w/ SCRL IN 28.8

Loss δ mAP

SCE 1.0 26.1

LocSCE (Ours) 0.2 27.0

LocSCE (Ours) 0.7 27.1

LocSCE (Ours) 0.5 27.8

I Dataset diversity more important than closeness to downstream task

XXX Consistency in the features improves performance

XXX Location of proposals helps for introducing easy positives for contrastive learning
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Quantifying Non-Linearity
Dimensionality reduction

Affinity scores are robust to dimensionality reduction
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I Manipulating 4-order tensor is computationally expensive

I Averaging over a dimension preserve affinity scores

Q. Bouniot On FAL and Non-linearity 71/61



Quantifying Non-Linearity
Covariance estimation

Shrinkage of the covariance makes it robust to sample size
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I Ledoit-Wolfe shrinkage of the covariance gives stable results for affinity scores.
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Deviations between datasets
Additional Results
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