# On Few-Annotation Learning and Non-Linearity in Deep Neural Networks

**Quentin Bouniot** 

December 20, 2023

1

# Outline



#### Introduction

- 2 Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning
- <sup>3</sup> Proposal-Contrastive Pretraining for Object Detection from Fewer Data
- 4 Understanding Deep Neural Networks Through the Lens of their Non-Linearity



### A Simple Problem ...



### A Simple Problem ...





Who is the painter?

### A Simple Problem ... for a Human !





Who is the painter?

► Human capacity to learn from few examples

# **Image Classification**







- $\phi$  encoding function parametrized by  $\theta$
- ► Linear classifiers w (green line) separate each class

### Learning from images

$$\mathcal{D}_{train} := \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\} \sim P(\mathbf{X}, \mathbf{Y})$$
Model parameters
$$\hat{\theta}, \hat{\mathbf{w}} := \arg\min_{\theta, \mathbf{w}} \sum_{i=1}^{N} \mathcal{L} (\mathbf{y}_i, \mathbf{x}_i; \theta, \mathbf{w})$$
Loss function

• Learn parameters  $\hat{\theta}$  and  $\hat{\mathbf{w}}$  minimizing loss function  $\mathcal{L}$  given data points  $\mathbf{x}_i$  and labels  $\mathbf{y}_i$ .

### **Practical Data Conditions**



### Expectations

Many-Shot Learning: A lot of data and labels

### **Practical Data Conditions**



### Expectations

- ► Many-Shot Learning: A lot of data and labels
- ► But labeling data is costly !

### **Practical Data Conditions**





# Expectations

- Many-Shot Learning: A lot of data and labels
- ▶ But labeling data is costly !

# Reality

- ► Few Annotation Learning (FAL): A lot of data and few labels
- ► Few Shot Learning (FSL): Few data and labels

### **General Frameworks**



# Outline



#### Introduction

Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning

- Meta-Learning 101
- Multi-Task Representation Learning Theory
- From Theory to Practice

Proposal-Contrastive Pretraining for Object Detection from Fewer Data

Understanding Deep Neural Networks Through the Lens of their Non-Linearity

### Perspectives

#### Terminology Meta-Learning 101

#### What is Meta-Learning ?

- ► Meta-Training: solve a set of *source tasks*.
- Meta-Testing: use knowledge from meta-training to solve previously unseen tasks more efficiently.

How is it related to Few-Shot Learning?

The Meta-learner *learns to learn* a new task with few shots.

# Introducing episodes

#### Meta-Learning 101



N-way k-shot episode: task with N different classes and k images for each class.

### Meta-Learning Problem Formulation Meta-Learning 101

Data distributions:

$$\forall t \in [1, \dots, N], \qquad \begin{array}{c} \mathcal{T}_t \sim P(\mathcal{T}), \qquad \mathcal{T}_t := \mathcal{S}_t \cup \mathcal{Q}_t \\ \underline{\text{Support sets}} \qquad & \begin{array}{c} Query \text{ sets} \end{array} \end{array}$$

### Meta-Learning Problem Formulation Meta-Learning 101

Data distributions:

Inner-level:

$$\forall t \in [1, \dots, N], \quad \mathcal{T}_t \sim P(\mathcal{T}), \quad \mathcal{T}_t := \mathcal{S}_t \cup \mathcal{Q}_t$$

$$\underbrace{\text{Support sets}}_{\text{function}} \quad (x, y; \theta, \mathbf{w})$$

$$\hat{\theta}_t, \hat{\mathbf{w}}_t = \underset{\theta, \mathbf{w}}{\operatorname{arg\,min}} \sum_{(x, y) \in \mathcal{S}_t} \mathcal{L}_{\operatorname{inner}} (x, y; \theta, \mathbf{w})$$

$$\widehat{Parameters specialized to each episode}$$

#### Meta-Learning Problem Formulation Meta-Learning 101

 $\forall t \in [1, \dots, N], \qquad \mathcal{T}_t \sim P(\mathcal{T}), \qquad \mathcal{T}_t := \mathcal{S}_t \cup \mathcal{Q}_t$ Support sets Query sets Data distributions: Inner-level: Inner loss function  $\hat{\boldsymbol{\theta}}_{t}, \hat{\mathbf{w}}_{t} = \operatorname*{arg\,min}_{\boldsymbol{\theta}, \mathbf{w}} \sum_{(x, y) \in \mathcal{S}_{t}} \mathcal{L}_{\mathsf{inner}} (x, y; \boldsymbol{\theta}, \mathbf{w})$ Parameters specialized to each episode **Outer-level:** Initialization for new sets of episodes Task-specific parameters learned  $\hat{\theta}, \hat{\mathbf{w}} = \operatorname*{arg\,min}_{\theta, \mathbf{w}} \sum_{t=1}^{N} \sum_{(x, y) \in \mathcal{Q}_{t}} \mathcal{L}_{\mathsf{outer}} (x, y; \hat{\theta}_{t}, \hat{\mathbf{w}}_{t})$ 

Q. Bouniot

Outer loss function

#### Meta-Learning methods Meta-Learning 101

Metric-based methods (ProtoNet<sup>1</sup>)



- ► Support samples for each class *i* fused into **prototypes** c<sub>i</sub>.
- Probability distribution using inverse of distances to prototypes.

On FAL and Non-linearity

<sup>&</sup>lt;sup>1</sup> Jake Snell, Kevin Swersky, and Richard S. Zemel. "Prototypical Networks for Few-shot Learning". In: NeurIPS. 2017

<sup>&</sup>lt;sup>2</sup>Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: ICML. 2017

### Meta-Learning methods Meta-Learning 101

Metric-based methods (ProtoNet<sup>1</sup>)



- ► Support samples for each class *i* fused into **prototypes** c<sub>i</sub>.
- Probability distribution using inverse of distances to prototypes.

#### Gradient-based methods (MAML<sup>2</sup>)



► End-to-end bi-level optimization through gradient descent.

On FAL and Non-linearity

<sup>&</sup>lt;sup>1</sup> Jake Snell, Kevin Swersky, and Richard S. Zemel. "Prototypical Networks for Few-shot Learning". In: NeurIPS. 2017

<sup>&</sup>lt;sup>2</sup>Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: ICML. 2017

# Introduction to MTR

Multi-Task Representation Learning Theory



# Introduction to MTR

Multi-Task Representation Learning Theory



# Introduction to MTR

Multi-Task Representation Learning Theory



# Link with Meta-Learning

Multi-Task Representation Learning Theory



On FAL and Non-linearity

#### Few-Shot Multi-Task Learning Theory Multi-Task Representation Learning Theory

Few-Shot Learning bound<sup>3</sup>



- ✓ All source and target data are useful to decrease the bound of excess risk.
- ✓ Increasing either T or  $n_1$  have an effect on the bound.

<sup>&</sup>lt;sup>3</sup>Simon S. Du et al. "Few-Shot Learning via Learning the Representation, Provably". In: ICLR. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. "Provable Meta-Learning of Linear Representations". In: arXiv. 2020.

#### Important Assumptions Multi-Task Representation Learning Theory

Assumption 1: Diversity of the source tasks<sup>4</sup>

Condition Number  $\kappa(\mathbf{W}^*) = \frac{\sigma_{\max}(\mathbf{W}^*)}{\sigma_{\min}(\mathbf{W}^*)}$  should not increase with T.

▶ Optimal predictors  $\mathbf{W}^* = [\mathbf{w}_1^*, \dots, \mathbf{w}_T^*]$  cover all the directions evenly

<sup>&</sup>lt;sup>4</sup>Simon S. Du et al. "Few-Shot Learning via Learning the Representation, Provably". In: ICLR. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. "Provable Meta-Learning of Linear Representations". In: arXiv. 2020.

#### Important Assumptions Multi-Task Representation Learning Theory

Assumption 1: Diversity of the source tasks<sup>4</sup>

 $\text{Condition Number } \kappa(\mathbf{W}^*) = \frac{\sigma_{\max}(\mathbf{W}^*)}{\sigma_{\min}(\mathbf{W}^*)} \text{ should not increase with } T.$ 

▶ Optimal predictors  $\mathbf{W}^* = [\mathbf{w}_1^*, \dots, \mathbf{w}_T^*]$  cover all the directions evenly

Assumption 2: Constant classification margin<sup>4</sup>

Norm of predictors  $\|\mathbf{w}_t^*\|_{t \in [\![1,T]\!]}$  should not increase with T

<sup>&</sup>lt;sup>4</sup>Simon S. Du et al. "Few-Shot Learning via Learning the Representation, Provably". In: ICLR. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. "Provable Meta-Learning of Linear Representations". In: arXiv. 2020.

# Illustration: Violated Assumptions

Multi-Task Representation Learning Theory



× Linear predictors cover only part of the space or over-specialize to the tasks

### **Illustration: Satisfied Assumptions**

Multi-Task Representation Learning Theory



Assumption 1 makes sure that linear predictors are complementary
 Assumption 2 avoids under- or over-specialization to the tasks

On FAL and Non-linearity

#### What Happens in Practice ? From Theory to Practice

#### Idea:

► Verify assumptions 1 and 2 for meta-learning algorithms.

#### How?

• Monitor condition number  $\kappa(\mathbf{W}_N)$  and norm of the predictors  $\|\mathbf{W}_N\|_F$  for the last N tasks

### What Happens in Practice ? From Theory to Practice



- ProtoNet naturally verifies the assumptions
- × MAML does not verify the assumptions

#### Why Does it Happen? From Theory to Practice

Case of ProtoNet:

► Theorem (informal)

If all prototypes are normalized, then all ProtoNet encoders verify Assumption 1.

Norm minimization is enough to obtain well-behaved condition number for ProtoNet.

#### Why Does it Happen? From Theory to Practice

#### Case of MAML:

► Theorem (informal)

At iteration i, if  $\sigma_{\min} = 0$  for last two tasks, then  $\kappa(\hat{\mathbf{W}}_2^{i+1}) \ge \kappa(\hat{\mathbf{W}}_2^i)$ .

✓ The condition number for MAML can **increase** between iterations.

#### What can we do? From Theory to Practice

Ensuring Assumption 1: Spectral regularization

$$\kappa(\mathbf{W}_N) = rac{\sigma_{\max}(\mathbf{W}_N)}{\sigma_{\min}(\mathbf{W}_N)}$$

✓ Regularizing with  $\kappa(\mathbf{W}_N)$  leads to a better coverage of the searched space

#### What can we do? From Theory to Practice

Ensuring Assumption 1: Spectral regularization

$$\kappa(\mathbf{W}_N) = rac{\sigma_{\max}(\mathbf{W}_N)}{\sigma_{\min}(\mathbf{W}_N)}$$

✓ Regularizing with  $\kappa(\mathbf{W}_N)$  leads to a better coverage of the searched space

Ensuring Assumption 2: Norm regularization or normalization for linear predictors

 $\checkmark$  Normalizing predictors ensure constant margin that does not change with T

# **Experimental Results**

#### From Theory to Practice



#### Experiments on mini-ImageNet 5-way 1-shot

# **Experimental Results**

#### From Theory to Practice



#### Experiments on mini-ImageNet 5-way 1-shot

Our regularization and normalization have the intended effects.

On FAL and Non-linearity
## Experimental Results From Theory to Practice



- ✓ Statistically significant improvements with our regularization and normalization.
- ✓ Better generalization when the assumptions are not verified naturally.

## Take Home Message I

#### Improving Few-Shot Learning Through Multi-Task Representation Learning Theory<sup>5</sup>

- ✓ **Connection** between Meta-Learning and Multi-Task Representation Learning Theory
- Explaining why some meta-learning methods naturally fulfill theoretical assumptions of the best learning bounds.
- ✓ We prove that it is possible to enforce the assumptions and propose practical ways which leads to significant performance improvements.

<sup>&</sup>lt;sup>5</sup>Quentin Bouniot, levgen Redko, Romaric Audigier, et al. "Improving Few-Shot Learning Through Multi-task Representation Learning Theory". In: ECCV. 2022. Q. Bouniot On FAL and Non-linearity

# Outline



- Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning
- Proposal-Contrastive Pretraining for Object Detection from Fewer Data
  - Motivations and Background
  - Proposal Selection Contrast (ProSeCo)
  - Experimental Results

Understanding Deep Neural Networks Through the Lens of their Non-Linearity

#### Perspectives

## **Object Detectors in a Nutshell**

#### **Motivations and Background**





- ► Detectors composed of **backbone model** and **detection-specific heads**.
- ▶ Predict class (Cls) and location (Loc) for each objects in an image.

### Setting considered Motivations and Background



#### Pretraining in Object Detection Motivations and Background

C C





<sup>&</sup>lt;sup>6</sup>Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: NeurIPS. 2021

<sup>&</sup>lt;sup>7</sup>Zhigang Dai et al. "Up-DETR: Unsupervised pre-training for object detection with transformers". In: CVPR. 2021; Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022

# Transformer-based Detectors

**Motivations and Background** 



• Transformer-based detectors generates N proposals  $\gg k$  objects in images.

## **Transformer-based Detectors**

**Motivations and Background** 



▶ Transformer-based detectors generates N proposals  $\gg k$  objects in images.

Contribution: Contrastive learning between proposals.





Object Proposals from Teacher are matched with Predictions from Student.

**Unsupervised Proposal Matching** 

$$\hat{\sigma}_{i}^{\mathsf{prop}} = \arg\min_{\sigma \in \mathfrak{S}_{N}} \sum_{j=1}^{N} \mathcal{L}_{\mathsf{prop}\_\mathsf{match}}(\mathbf{y}_{(i,j)}, \hat{\mathbf{y}}_{(i,\sigma(j))})$$

$$\uparrow \mathsf{Permutations of } N \text{ elements} \qquad \uparrow \mathsf{Object Predictions}$$

Object Proposals

▶ Proposal *j* found by the teacher associated to prediction  $\hat{\sigma}_i^{\text{prop}}(j)$  of the student.

**Unsupervised Proposal Matching** 

$$\hat{\sigma}_{i}^{\mathsf{prop}} = \arg\min_{\sigma \in \mathfrak{S}_{N}} \sum_{j=1}^{N} \mathcal{L}_{\mathsf{prop}\_\mathsf{match}}(\mathbf{y}_{(i,j)}, \hat{\mathbf{y}}_{(i,\sigma(j))})$$

$$\uparrow \mathsf{Permutations of } N \text{ elements} \qquad \uparrow \mathsf{Object Predictions}$$

Object Dreveele

▶ Proposal *j* found by the teacher associated to prediction  $\hat{\sigma}_i^{\text{prop}}(j)$  of the student.

Matching Cost  $\mathcal{L}_{\text{prop}\_\text{match}}$  depends on:

features similarity

 $\blacktriangleright$   $L_1$  loss of box coordinates

generalized IoU loss







Naive way



× Close proposals considered as negative examples.

#### Localization-aware Contrastive loss

Strong view



✓ Overlapping proposals are considered as positive examples.

#### Soft Contrastive Estimation (SCE) loss function<sup>8</sup>



On FAL and Non-linearity

<sup>&</sup>lt;sup>8</sup> Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023.

#### Soft Contrastive Estimation (SCE) loss function<sup>8</sup>





On FAL and Non-linearity

<sup>&</sup>lt;sup>8</sup> Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023.

Localization-aware similarity distribution

$$w_{(in,jm)}^{\text{Loc}} = \lambda_{\text{SCE}} \cdot \mathbb{1}_{i=n} \mathbb{1}_{IoU_i(j,m) \ge \delta} + (1 - \lambda_{\text{SCE}}) \cdot p'_{(in,jm)}$$

$$\uparrow \text{IoU between proposals in same image above threshold } \delta$$

Localized SCE (LocSCE) function

$$\mathcal{L}_{\text{LocSCE}}(\mathbf{y}, \hat{\mathbf{y}}, \hat{\sigma}^{\text{prop}}) = -\frac{1}{N_b N} \sum_{i=1}^{N_b} \sum_{n=1}^{N_b} \sum_{j=1}^{N} \sum_{m=1}^{N} w_{(in,jm)}^{\text{Loc}} \log(p_{(in,j\hat{\sigma}_n^{\text{prop}}(m))}')$$
Effective batch size

#### Avoiding Collapse Proposal Selection Contrast (ProSeCo)



<sup>&</sup>lt;sup>9</sup> Jasper RR Uijlings et al. "Selective search for object recognition". In: IJCV. 2013.

## Full pretraining procedure Proposal Selection Contrast (ProSeCo)



► Full pretraining procedure with both contrastive and localization learning.

#### Pretraining on ImageNet, finetuning on Mini-COCO Experimental Results

| Pretraining          | Arch.  | Mini-COCO |           |             |  |
|----------------------|--------|-----------|-----------|-------------|--|
|                      |        | 1% (1.2k) | 5% (5.9k) | 10% (11.8k) |  |
| Supervised           | Trans. | 13.0      | 23.6      | 28.6        |  |
| SwAV <sup>10</sup>   | Trans. | 13.3      | 24.5      | 29.5        |  |
| SCRL <sup>11</sup>   | Trans. | 16.4      | 26.2      | 30.6        |  |
| DETReg <sup>12</sup> | Trans. | 15.9      | 26.1      | 30.9        |  |
| Supervised           | Conv.  | -         | 19.4      | 24.7        |  |
| SoCo <sup>*13</sup>  | Conv.  | -         | 26.8      | 31.1        |  |
| ProSeCo (Ours)       | Trans. | 18.0      | 28.8      | 32.8        |  |

<sup>&</sup>lt;sup>10</sup>Mathilde Caron et al. "Unsupervised learning of visual features by contrasting cluster assignments". In: NeurIPS. 2020.

<sup>&</sup>lt;sup>11</sup>Byungseok Roh et al. "Spatially consistent representation learning". In: CVPR. 2021.

<sup>&</sup>lt;sup>12</sup>Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022.

<sup>13</sup> Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: NeurIPS. 2021.

#### Finetuning on other datasets Experimental Results

| Pretraining          | FSOD-test  | FSOD-train | PASCAL VOC | Mini-VOC  |            |
|----------------------|------------|------------|------------|-----------|------------|
|                      | 100% (11k) | 100% (42k) | 100% (16k) | 5% (0.8k) | 10% (1.6k) |
| Supervised           | 39.3       | 42.6       | 59.5       | 33.9      | 40.8       |
| DETReg <sup>14</sup> | 43.2       | 43.3       | 63.5       | 43.1      | 48.2       |
| ProSeCo (Ours)       | 46.6       | 47.2       | 65.1       | 46.1      | 51.3       |

✓ Improvements of about **2 points over SOTA** on all datasets considered.

<sup>&</sup>lt;sup>14</sup>Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022.

## Take Home Message II

We propose ProSeCo, a Proposal-Contrastive Pretraining strategy for Object Detection with Transformers.<sup>15</sup>

- Leverage high number of Object Proposals for **Proposal-Contrastive Learning**.  $\checkmark$
- Our **ProSeCo improves performance** when training with limited labeled data.  $\checkmark$
- **Consistency** with object-level features is important for Object Detection.  $\checkmark$
- **Location information** helps for Proposal-Contrastive learning. 1

<sup>15</sup> Quentin Bouniot, Romaric Audigier, et al. "Proposal-Contrastive Pretraining for Object Detection from Fewer Data", In: ICLR, 2023, On FAL and Non-linearity

# Outline

Introduction

2 Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning

Proposal-Contrastive Pretraining for Object Detection from Fewer Data

- 4 Understanding Deep Neural Networks Through the Lens of their Non-Linearity
  - Quantifying Non-linearity
  - Journey through DNNs History
  - Additional Results



## **Motivations**

#### Non-linearity is at the heart of DNNs

- ► Universal function approximators thanks to non-linearity.
- ► Mainly introduced through *activation functions*.

#### No such notion of quantifying non-linearity exists in the literature.

► Research mainly focus on quantifying expressive power of DNNs.

Goal: Measure non-linearity from data distribution

# Quantifying Non-Linearity

#### Measure non-linearity as lack of linearity through Optimal Transport (OT)

- We know the closed-form solution of the OT problem for random variables following normal distributions.
- ► For any X and Y, if Y = TX with T PSD, then the solution of OT problem is exactly the one of their normal approximations.
- ▶ We obtain a bound on the difference of the two OT problems.
- ► We can define the *affinity score* using this bound.

## Quantifying Non-Linearity Affinity Score



•  $\rho_{\text{aff}}$  describes how much *Y* differs from being a PSD affine transformation of X.

▶ 
$$0 \le \rho_{\text{aff}}(X, Y) \le 1$$
, and  $\rho_{\text{aff}}(X, Y) = 1 \Leftrightarrow Y = T_{\text{aff}}X$ .

## Quantifying Non-Linearity First Examples



#### Affinity scores over input domain of activation functions

- $\mathbf{X} \sim \mathcal{N}(\mu, \sigma)$ , with  $\mu$  sliding over the domain and multiple  $\sigma$  for each  $\mu$ .
- $\rho_{\text{aff}}(\mathbf{X}, f(\mathbf{X}))$  for popular activation functions f.
- Activation functions can be characterized by the lowest score achieved and the range of non-linearity.

## Non-linearity signature Journey through DNNs History

#### Notations

- ▶ Define a neural network *N* as a *composition of layers*  $F_i$ :  $N = F_L \odot ... \odot F_i ... \odot F_1 = \bigcirc_{k=1,...,L} F_k$  where  $\odot$  stands for a composition.
- ► Each layer  $F_i$  is a function  $F_i : \mathbb{R}^{h \times w \times c} \to \mathbb{R}^{h \times w \times c}$  whose outputs  $F_i(\mathbf{X}_i)$  are inputs of the following layer  $F_{i+1}$ . Usual  $F_i$  include convolution, feedforward, pooling or activation functions.
- Define a finite set of common activation functions  $\mathcal{A} := \{\sigma | \sigma : \mathbb{R}^{h \times w \times c} \to \mathbb{R}^{h \times w \times c}\}$
- Let r be a dimensionality reduction function such that  $r : \mathbb{R}^{h \times w \times c} \to \mathbb{R}^{c}$

Non-linearity signature of N given X:

$$\rho_{\text{aff}}(N; \mathbf{X}) = \{ \rho_{\text{aff}}(r(\mathbf{X}_i), \sigma(r(\mathbf{X}_i))), \forall \sigma \in F_i \cap \mathcal{A}, i \in \{1, \dots, L\} \}$$

#### Early Convnets Journey through DNNs History



► Early convnets had **tiny variations** in non-linearity propagation.

## Deeper Networks Journey through DNNs History



- ► Different color codes stand for *distinct* activation functions appearing *repeatedly* in the architecture (*e.g.* every first ReLU in residual blocks for ResNet).
- Deeper networks with residual connections have a shaking effect in their non-linearity signatures.

## Vision Transformers Journey through DNNs History



► Activation functions only present in their MLP blocks.

► Highly non-linear compared to convnets.

## Correlation with Accuracy Additional Results



- ► We separate architectures into semantically meaningful groups: Traditional architectures (Alexnet, VGGs, ResNets and DenseNets) and ViTs.
- ► Confirms shaking effect for traditional models.
- ► Clear trend toward more non-linearity in ViTs.

#### Unique Measure Additional Results



► No other criterion consistently correlates with the affinity score across 33 architectures used in our test.

## Clustering of architectures Additional Results



 Clustering of the architectures using the pairwise DTW distances between non-linearity signatures.

## Take-Home Message III

#### Understanding Deep Neural Networks Through the Lens of their Non-Linearity<sup>16</sup>

- First theoretical sound tool to measure non-linearity in DNNs
- Different developments in Deep Learning can be understood through the prism of non-linearity
- Variety of potential applications

 <sup>16</sup> Quentin Bouniot, levgen Redko, Anton Mallasto, et al. "Understanding deep neural networks through the lens of their non-linearity". In: arXiv preprint arXiv:2310.11439 (2023).

 Q. Bouniot
 On FAL and Non-linearity

# Outline

## 1 Introduction

- 2 Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning
- 3 Proposal-Contrastive Pretraining for Object Detection from Fewer Data
- 4 Understanding Deep Neural Networks Through the Lens of their Non-Linearity

#### Perspectives
## Perspectives

Towards bridging the gap between MTR theory and Meta-learning in practice.

► Take into account similarity between source and test tasks for *cross-domain* generalization.

## Perspectives

#### Towards bridging the gap between MTR theory and Meta-learning in practice.

► Take into account similarity between source and test tasks for *cross-domain* generalization.

#### Towards leveraging unlabeled data for Object Detection using Transformers.

Improvements from self- and semi-supervision are less significant than for convolutional methods. Consider *more suited* unsupervised tasks ?

## Perspectives

#### Towards bridging the gap between MTR theory and Meta-learning in practice.

► Take into account similarity between source and test tasks for *cross-domain* generalization.

#### Towards leveraging unlabeled data for Object Detection using Transformers.

Improvements from self- and semi-supervision are less significant than for convolutional methods. Consider *more suited* unsupervised tasks ?

#### Towards efficient adaptation through non-linearity analysis

- ► Comparing datasets through distance between non-linearity signatures
- ► Regularization of non-linearity signatures during training.

# Thank you for listening !

# Do not hesitate to contact me if you have questions.

## Contributions

- Quentin Bouniot, levgen Redko, Romaric Audigier, et al. "Improving Few-Shot Learning Through Multi-task Representation Learning Theory". In: ECCV. 2022.
- Quentin Bouniot, Romaric Audigier, et al. "Proposal-Contrastive Pretraining for Object Detection from Fewer Data". In: *ICLR*. 2023.
- Quentin Bouniot, levgen Redko, Anton Mallasto, et al. "Understanding deep neural networks through the lens of their non-linearity". In: *arXiv preprint arXiv:2310.11439* (2023).

# **References I**

- Jake Snell, Kevin Swersky, and Richard S. Zemel. "Prototypical Networks for Few-shot Learning". In: *NeurIPS*. 2017.
- Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: *ICML*. 2017.
- Simon S. Du et al. "Few-Shot Learning via Learning the Representation, Provably". In: *ICLR*. 2021.
- Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. "Provable Meta-Learning of Linear Representations". In: *arXiv*. 2020.
- Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: *NeurIPS*. 2021.
- Zhigang Dai et al. "Up-DETR: Unsupervised pre-training for object detection with transformers". In: CVPR. 2021.
- Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022.

# **References II**

- Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023.
- Jasper RR Uijlings et al. "Selective search for object recognition". In: IJCV. 2013.
- Mathilde Caron et al. "Unsupervised learning of visual features by contrasting cluster assignments". In: *NeurIPS*. 2020.
- Byungseok Roh et al. "Spatially consistent representation learning". In: CVPR. 2021.
- Yunhui Guo et al. "A Broader Study of Cross-Domain Few-Shot Learning". In: ECCV. 2020.
- Zhi Tian et al. "Fcos: Fully convolutional one-stage object detection". In: ICCV. 2019.
- Shaoqing Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks". In: *NeurIPS*. 2015.
- Tsung-Yi Lin et al. "Feature pyramid networks for object detection". In: CVPR. 2017.

## **References III**

- Xizhou Zhu et al. "Deformable DETR: Deformable Transformers for End-to-End Object Detection". In: *ICLR*. 2021.
- Nicolas Carion et al. "End-to-end object detection with transformers". In: ECCV. 2020.

# **Experimental Results**



- Improvement does not translate to cross-domain for metric-based methods. ×
- Gradient-based methods keep their accuracy gains. 1

MAML + reg

40k 50k 60k

### Few-Shot Learning Setting Background in Object Detection

How do object detectors handle data scarcity?

| Method                                                                     | Arch.                    | Mini-COCO                                                                                        |                                                                                                   |                                                                                                     |                                                                                                     |  |  |
|----------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
|                                                                            |                          | 0.5% (590)                                                                                       | 1% (1.2k)                                                                                         | 5% (5.9k)                                                                                           | 10% (11.8k)                                                                                         |  |  |
| FCOS <sup>17</sup><br>FRCNN + FPN <sup>18</sup><br>Def. DETR <sup>19</sup> | Conv.<br>Conv.<br>Trans. | $\begin{array}{c} 5.42 \pm 0.01 \\ 6.83 \pm 0.15 \\ \textbf{8.95} \pm \textbf{0.51} \end{array}$ | $\begin{array}{c} 8.43 \pm 0.03 \\ 9.05 \pm 0.16 \\ \textbf{12.96} \pm \textbf{0.08} \end{array}$ | $\begin{array}{c} 17.01 \pm 0.01 \\ 18.47 \pm 0.22 \\ \textbf{23.59} \pm \textbf{0.21} \end{array}$ | $\begin{array}{c} 20.98 \pm 0.01 \\ 23.86 \pm 0.81 \\ \textbf{28.55} \pm \textbf{0.08} \end{array}$ |  |  |

▶ Performance on COCO with different percentages of labeled training data.

► Def. DETR stronger than FRCNN + FPN and FCOS with fewer labeled data.

On FAL and Non-linearity

<sup>&</sup>lt;sup>17</sup>Zhi Tian et al. "Fcos: Fully convolutional one-stage object detection". In: ICCV. 2019.

<sup>18</sup> Shaoqing Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks". In: NeurIPS. 2015; Tsung-Yi Lin et al. "Feature pyramid networks for object detection". In: CVPR. 2017.

<sup>&</sup>lt;sup>19</sup>Xizhou Zhu et al. "Deformable DETR: Deformable Transformers for End-to-End Object Detection". In: ICLR. 2021.

## **Object Detection 101**

**Background in Object Detection** 

Transformer-based methods (e.g., DETR<sup>20</sup>)



- ► Simpler overall architecture, without hand-crafted heuristics.
- ► Increasingly popular architecture and strong performance with few data.

<sup>&</sup>lt;sup>20</sup>Nicolas Carion et al. "End-to-end object detection with transformers". In: ECCV. 2020.

## **Classical Contrastive Learning**

#### Unsupervised Pretraining for Object Detection with Fewer Annotation



Features

▶ Push closer positive examples and push away negative examples.

# **Ablation Studies**

| Pretraining     | Dataset | mAP  | Loss          | δ   | mAP  |
|-----------------|---------|------|---------------|-----|------|
| ProSeCo w/ SwAV | COCO    | 27.4 | SCE           | 1.0 | 26.1 |
| ProSeCo w/ SwAV | IN      | 27.8 | LocSCE (Ours) | 0.2 | 27.0 |
| DETReg w/ SCRL  | IN      | 28.0 | LocSCE (Ours) | 0.7 | 27.1 |
| ProSeCo w/ SCRL | IN      | 28.8 | LocSCE (Ours) | 0.5 | 27.8 |

- ► Dataset diversity more important than closeness to downstream task
- ✓ **Consistency** in the features improves performance
- Location of proposals helps for introducing easy positives for contrastive learning

# Quantifying Non-Linearity

Dimensionality reduction

Affinity scores are robust to dimensionality reduction



- Manipulating 4-order tensor is computationally expensive
- ► Averaging over a dimension preserve affinity scores

### Quantifying Non-Linearity Covariance estimation



#### Shrinkage of the covariance makes it robust to sample size

Ledoit-Wolfe shrinkage of the covariance gives stable results for affinity scores.

### Deviations between datasets Additional Results



Deviations to ImageNet of different datasets (CIFAR10, CIFAR100, random data), for each architecture.