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A Simple Problem ...
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A Simple Problem ...

Who is the painter ?
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A Simple Problem ... for a Human'!

Who is the painter ?

» Human capacity to learn from few
examples
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Image Classification

nw

Features

» ¢ encoding function parametrized by 6
» Linear classifiers w (green line) separate each class
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Learning from images

Dirain = {(x1,¥1),-- -, XN, ¥~8)} ~ P(X,Y)

Data points

[ 2tapomnts
N

0, w ::argming L (yi , x ;0,w)
0,w i—1

Label
Loss function

» Learn parameters ¢ and w minimizing loss function £ given data points x; and labels y,.
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Practical Data Conditions

Expectations

» Many-Shot Learning: A lot of data and
labels
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Practical Data Conditions

Expectations Reality
» Many-Shot Learning: A lot of data and » Few Annotation Learning (FAL): A lot of
labels data and few labels
» But labeling data is costly ! » Few Shot Learning (FSL): Few data and

labels
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General Frameworks

Q. Bouniot
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Outline

e Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning
@ Meta-Learning 101
@ Multi-Task Representation Learning Theory
@ From Theory to Practice
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Terminology
Meta-Learning 101

What is Meta-Learning ?
» Meta-Training: solve a set of source tasks.

» Meta-Testing: use knowledge from meta-training to solve previously unseen tasks
more efficiently.

How is it related to Few-Shot Learning ?

The Meta-learner learns to learn a new task with few shots.
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Introducing episodes
Meta-Learning 101

Training Testing
Support Set 1 Query Set

<~ Episode i
Meta-
Training
<__
Outer <
level

Inner level
N-way k-shot episode: task with V different classes and k images for each class.

Q. Bouniot On FAL and Non-linearity

11/61



Meta-Learning Problem Formulation
Meta-Learning 101

Data distributions: Drawing N episodes

v
vte[l,...,N], T, ~ P(T), T =85 U9,

Support sets T T Query sets
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Meta-Learning Problem Formulation
Meta-Learning 101

Data distributions: Drawing N episodes

v
vte[l,...,N], T, ~ P(T), T =85 U9,

Support sets T T Query sets

Inner-level: )
Inner loss function

——
ét;VAVt = arg min Z Linner (967?1;9,“’)

(z,y)ES:
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Meta-Learning Problem Formulation
Meta-Learning 101

Data distributions: Drawing N episodes

v
vtell,...,N], Ti~P(T), Ti=8UQ

Support sets T T Query sets

Inner-level: )
Inner loss function

—

ét; Wy = argmin Z Linner (2,50, w)
0,w
(z,y)€S:

Outer-level: Initialization for new sets of episodes

v

N
0,w :argminz Z Louter (2, 9; )

Ow =1 (z,y)€Q¢

TOuter loss function

Q. Bouniot On FAL and Non-linearity 12/61




Meta-Learning methods
Meta-Learning 101

Metric-based methods (ProtoNet 1)

» Support samples for each class ¢ fused
into prototypes c;.

» Probability distribution using inverse of
distances to prototypes.

1 Jake Snell, Kevin Swersky, and Richard S. Zemel. “Prototypical Networks for Few-shot Learning”. In: Neur/PS. 2017

2(Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks”. In: [CML. 2017
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Gradient-based methods (MAML 2)

— meta-learning

9 ---- learning/adaptation
VLs
VL,
VL, //"93
ICEY A

» End-to-end bi-level optimization
through gradient descent.

urlPS. 2017
2017
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Introduction to MTR

Multi-Task Representation Learning Theory

T source tasks .. Matrix W of linear
Training .
n, samples per predictors w;, Vt €
task 1,77
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Introduction to MTR

Multi-Task Representation Learning Theory

T source tasks .. Matrix W of linear
Training .
n, samples per predictors w;, Vt €
task 1,77

l Shared representation ¢

\
n, samples for Linear predictor
new target task ™= Testing

T+1 )

Wri1
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Introduction to MTR

Multi-Task Representation Learning Theory

T source tasks .. Matrix W of linear
Training .
n, samples per predictors w;, Vt €
task 1,77

l Shared representation ¢

\

n, samples for Linear predictor

new target task ™= Testing Wos
T+1 )

Goal: Minimize excess risk ER = L (¢, Wr1) — L(¢*, Wii1),

» Truerisk £ » Optimal representation ¢* » wr. , ideal target linear predictor.
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Link with Meta-Learning
Multi-Task Representation Learning Theory

T source tasks .. Matrix W of linear
Meta-training .
n,; samples per predictors w;, Vt €
task [1,7]

l Shared representation ¢

n, samples for Linear predictor
new target task ===  Meta-testing Wr s
T+1

Goal: Minimize excess risk ER = £(¢, Wr1) — L(¢*, W)

» True risk £ » Optimal representation ¢* » w. , ideal target linear predictor.
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Few-Shot Multi-Task Learning Theory

Multi-Task Representation Learning Theory

Few-Shot Learning bound®

If assumptions are satisfied:
ER(6,wri1) <O (4 + 1)

2 Number of samples for target task

Number of samples per source tasks | | Number of source tasks

V" All source and target data are useful to decrease the bound of excess risk.

v Increasing either 7" or n, have an effect on the bound.

3Simon S. Du et al. “Few-Shot Learning via Learning the Representation, Provably”. In: ICLR. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. “Provable Meta-Learning of
Linear Representations”. In: arXiv. 2020.
Q. Bouniot On FAL and Non-linearity 16/61



Important Assumptions
Multi-Task Representation Learning Theory

Assumption 1: Diversity of the source tasks*

Condition Number x(W*) =

”max(w*

) . .
i (W) should not increase with T'.

» Optimal predictors W* = [wj, ...

4simon S. Du et al. “Few-Shot Learning via Learning the Representation, Provably”. In: ICLR. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. “Provable Meta-Learning of

Linear Representations”. In: arXiv. 2020.
Q. Bouniot

,wh] cover all the directions evenly
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Important Assumptions
Multi-Task Representation Learning Theory

Assumption 1: Diversity of the source tasks*

Condition Number x(W*) =

”max(w*

) . .
i (W) should not increase with T'.

» Optimal predictors W* = [wj, ...

Assumption 2: Constant classification margin®

,wh] cover all the directions evenly

Norm of predictors ||w} ||;c1,7 should not increase with T'

4simon S. Du et al. “Few-Shot Learning via Learning the Representation, Provably”. In: ICLR. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. “Provable Meta-Learning of

Linear Representations”. In: arXiv. 2020.
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Illustration: Violated Assumptions
Multi-Task Representation Learning Theory

Source tasks

Target tasks

W= [Wl,Wz,W3] %

Omax Omin
K> 1

x Linear predictors cover only part of the space or over-specialize to the tasks
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Illustration: Satisfied Assumptions
Multi-Task Representation Learning Theory

Source tasks
o8 W1
'.//
,'/\.xh\\ P
'\\\ q“\\ //:
N ) oo
3 W = [wy, wy, ws]
w2 N
SN
RN 7. Q// \
w2 % :
\\ @//
.‘ D D
e ___
1/|lwsl| Omax Omin
I v
T Kk~ 1
o

Q. Bouniot
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Target tasks

p)

\ 4
&,

.~.

'/

v Assumption 1 makes sure that linear predictors are complementary
v/ Assumption 2 avoids under- or over-specialization to the tasks
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What Happens in Practice ?
From Theory to Practice

Idea:
» Verify assumptions 1 and 2 for meta-learning algorithms.

How ?
» Monitor condition number k(W ) and norm of the predictors ||W x| ¢ for the last NV tasks

Q. Bouniot On FAL and Non-linearity 20/61



What Happens in Practice ?
From Theory to Practice

= ProtoNet — mini
— Maml = = tiered
1004 35
o .
% 80 =
1 3.0
5 §
=
O 60 0g =
0_ /2
= .
= 2
T 204 15 ¥
2

o
-
o

0 10k 20k 30k 40k 50k 60k
Training iteration

Monitoring the condition number

V' ProtoNet naturally verifies the assumptions

x  MAML does not verify the assumptions

|I[W || ProtoNet

10000

8000

6000

4000

2000
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= ProtoNet = mini

—_— Maml === tiered

0 10k 2Qk‘ 30}< 40L‘< 50k 60k
Training iteration

Monitoring the norm

TEEE
[Wylr Maml

o o
o o
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Why Does it Happen ?

From Theory to Practice

Case of ProtoNet:
» Theorem (informal)

If all prototypes are normalized,
then all ProtoNet encoders verify Assumption 1.

v" Norm minimization is enough to obtain well-behaved condition number for ProtoNet.

Q. Bouniot On FAL and Non-linearity 22/61



Why Does it Happen ?

From Theory to Practice

Case of MAML:
» Theorem (informal)

At iteration i, if o, = O for last two tasks,
then k(W5 > k(W5).

v The condition number for MAML can increase between iterations.

Q. Bouniot On FAL and Non-linearity 23/61



What can we do ?
From Theory to Practice

Ensuring Assumption 1: Spectral regularization

Q. Bouniot

K(Wn) =

O max (WN )

Imin (W)

v" Regularizing with (W ) leads to a better coverage of the searched space

On FAL and Non-linearity
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What can we do ?
From Theory to Practice

Ensuring Assumption 1: Spectral regularization

omax (W
H(WN) = Umin((Wg))

v" Regularizing with (W ) leads to a better coverage of the searched space

Ensuring Assumption 2: Norm regularization or normalization for linear predictors

v" Normalizing predictors ensure constant margin that does not change with T’
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Experimental Results
From Theory to Practice

Experiments on mini-ImageNet 5-way 1-shot

m— ProtoNet = ProtoNet + norm

—ProtoNet — ProtoNet + norm —ProtoNet == ProtoNet + norm
0.50
80 10000
,2(,0 u 8000 §045
= 6000 =
3 040
540 2 o
2 = 4000 9
< 0.35
20 2000
0 0 0.30
0 10k 20k 30k 40k 50k 60k 0 10k__20k 30k 40k S0k 60k 0 10k 20k 30k 40k S50k 60k
Training iteration Training iteration Training iteration
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Experimental Results
From Theory to Practice

Experiments on mini-ImageNet 5-way 1-shot

m— ProtoNet = ProtoNet + norm
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~—~60
=
E 40
<2
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0
0 10k 20k 30k 40k 50k 60k
Training iteration
— MAML — MAML + reg
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w— ProtoNet = ProtoNet + norm
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Training iteration

— AML — MAML + reg
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v Our regularization and normalization have the intended effects.
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Experimental Results
From Theory to Practice

Accuracy Gap (in p.p.)

EEN Proto . Maml
- MP . MC
20
15
1.0
0.5
0.0
1-Shot 5-Shot
Omniglot
20-way

— - S}
o o o

o

Accuracy Gap (in p.p.)

o
o

. Maml
e

1-Shot o 5-Shot
minilmageNet

5-way

EE Proto . Maml
- MP - MC

Accuracy Gap (in p.p.)

=4
5}

l~Sh0F 5-Shot
tieredimageNet

5-way

v Statistically significant improvements with our regularization and normalization.
v/ Better generalization when the assumptions are not verified naturally.

Q. Bouniot
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Take Home Message |

Improving Few-Shot Learning Through Multi-Task Representation Learning Theory®

v Connection between Meta-Learning and Multi-Task Representation Learning Theory

V' Explaining why some meta-learning methods naturally fulfill theoretical assumptions
of the best learning bounds.

v We prove that it is possible to enforce the assumptions and propose practical ways
which leads to significant performance improvements.

5Quent—in Bouniot, levgen Redko, Romaric Audigier, et al. “Improving Few-Shot Learning Through Multi-task Representation Learning Theory”.
Q. Bouniot On FAL and Non-linearity
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Outline

e Proposal-Contrastive Pretraining for Object Detection from Fewer Data
@ Motivations and Background
@ Proposal Selection Contrast (ProSeCo)
@ Experimental Results

Q. Bouniot On FAL and Non-linearity 28/61



Object Detectors in a Nutshell

Motivations and Background

Object Detector

Detection E
Backbone Heads E

.......................................

» Detectors composed of backbone model and detection-specific heads.
» Predict class (Cls) and location (Loc) for each objects in an image.

Q. Bouniot On FAL and Non-linearity 29/61



Setting considered
Motivations and Background

ad

Unsupervised Supervised
Pretraining Fine-Tuning
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Pretraining in Object Detection
Motivations and Background

Overall Pretraining

(b) Our Approach
B il AN
__________ @° ... ] : B
. N : 1 N S
1 1 1 . 1 1 '
i | Back ] _, | Detection : ' Back a > Detection : i | Back a Detection | 1
“b Head - flb Head :
: one eads : : bone Heads ! i | bone eads
L ; ' ' .~ K
\ 1
. ’ .
v Consistency R LG EE TR L e - x Discrepancy
x Costly v Consistency v Less costly
v Less costly
6Fangyun Wei et al. “Aligning pretraining for detection via object-level contrastive learning”.
7Zhigang Dai et al. “Up-DETR: Unsupervised pre-training for object detection with transformers”. ; Amir Bar et al. “Detreg: Unsupervised pretraining with region

priors for object detection”.
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Transformer-based Detectors
Motivations and Background

Object

proposals
L]
Transformer L]
Backbone Encoder- ——» [
Decoder 0
|
O

» Transformer-based detectors generates IV proposals > k objects in images.
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Transformer-based Detectors

Motivations and Background

Backbone

» Transformer-based detectors generates NV proposals > k objects in images.

Object
proposals

Transformer
Encoder-
Decoder

:

(|

Contribution: Contrastive learning between proposals.

Q. Bouniot
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Pro;j.
--------------------------- MLP_
{ P Feat \
! ! > eatures
1| Back Transformer _:. L :
i| bone Detector |i U<+ Boxes |
: Py U !
e Box
Weak view Teacher MLP
Object
Proposals
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Object
Predictions
Strong view Student Box
T T e . MLP
Transformer _lf_ > Boxes
! 1
Detector | 1 |
b Features
e RN _ |
EMAl Proj. Proposal
""""""""""""" N {I\—AL_P_ -==== Matching
i -B—» Feat
Transformer |\ earres :}y_T
Detector | .-B-» Boxes |
[ R _! stop
T TTrmmemeeeeeoeooes - IEICE)F(’ gradients
Weak view Teacher
Object
Proposals

» Object Proposals from Teacher are matched with Predictions from Student.
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Unsupervised Proposal Matching Object Proposals

~ . N ~
Uiarop = argmilyesy Zj:l 'Cprop_match(}’(fi,.j)v Y(i,.n(j)))

T Permutations of N elements Object Predictions

» Proposal j found by the teacher associated to prediction 7" () of the student.
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Unsupervised Proposal Matching Object Proposals

~ . N ~
ngp = argmilyesy Zj:l 'Cprop_match(yo‘,.j)v Y(i,.a(j)))

T Permutations of N elements Object Predictions

» Proposal j found by the teacher associated to prediction 7" () of the student.

Matching Cost Lyr0p match depends on:

» features similarity » L loss of box coordinates » generalized loU loss

A,
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Naive way

Strong view

Weak view

x Close proposals considered as negative examples.

Q. Bouniot On FAL and Non-linearity 37/61



Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Localization-aware Contrastive loss

Strong view

Weak view

v Overlapping proposals are considered as positive examples.

Q. Bouniot On FAL and Non-linearity 38/61



Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Soft Contrastive Estimation (SCE) loss function®
Relations between proposals Temperature
v —————
p/ ]lz#n]l]7$m eXp(Z(i.j) . Z(n.m)/Tt)
(in,jm)
Zk 1 z 1 Lizr oz eXP(Zu.j) : Z(M)/Tt)
T Features of Object Proposals

8 julien Denize et al. “Similarity contrastive estimation for self-supervised soft contrastive learning”. In: WACV. 2023.
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Soft Contrastive Estimation (SCE) loss function®

Relations between proposals

Temperature

v —————
p, ]lz#n]lj7£m eXp(Z('i.j) *Z(n,m) /Tt>
(in,jm)
Zk 1 z 1 Lizr eXp(Zu.j) 'Z<k.1)/Tt)
T Features of Object Proposals
Features of Object Predictions
v
7 exp(z(i 7)) i(n m)/T)
P(in,jm)

Zk 1 1_1eXP(Z<u) Z(k,1)/T)

TContrastive aspect between predictions and proposals

8 julien Denize et al. “Similarity contrastive estimation for self-supervised soft contrastive learning”. In: WACV. 2023.
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Proposal-Contrastive Learning
Proposal Selection Contrast (ProSeCo)

Localization-aware similarity distribution

w%zo’ri jm) — = Asce - Li=n1 + (1 - /\SCE) ’ p/(in,jm)

Localized SCE (LocSCE) function

Ny Ny

NbN Z Z Z Z w(ln Jm) 1Og (in anmp(m)))

=1 n=1j=1m=1

O-Pp

Liocsce(y, ¥,

Effective batch size
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Avoiding Collapse

Proposal Selection Contrast (ProSeCo)

Object
: Predictions B'OX
Selective Strong view [P S Eu_d_?l'_lt_ _______ IEICI’_)I(D Matching
Search e 1 \ = ————— . Iy
Back .|| Transformer _:_-B" Boxes  prarereer }
; 1
bone Detector |i 1 F |
D eatures B
N e N e e e e - -,
Proj.
MLP

» Student predictions must match boxes
Y randomly selected from Selective Search?’
Weak view outputs.

9Jasper RR Uijlings et al. “Selective search for object recognition”. In: [JCV. 2013,
Q. Bouniot On FAL and Non-linearity
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Full pretraining procedure
Proposal Selection Contrast (ProSeCo)

Object
i Predictions B'OX Leoora
Selective strong view P S tUdent _______ . Iacl’_)lé Matching [ L+
Search 3 ) it . Y giou
: Transformer |} Boxes :}
Detector E : Features |
T T N S e e o ,'
EMA Proj. Proposal
o 1 ------- “ {M'-_P ______ . Matghing > Liocsce
: Feat
Transformer |i_! eatures :}/_T
Detector |i Boxes |
PN oo _' stop
TmmTmmommemsmmmeeoeoes - Sli’; gradients
Weak view Teacher
Object
Proposals

» Full pretraining procedure with both contrastive and localization learning.
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Pretraining on ImageNet, finetuning on Mini-COCO

Experimental Results

Pretraining Arch. Mini-COCO
1% (1.2k) 5% (5.9k) 10% (11.8k)

Supervised Trans. 13.0 23.6 28.6
SwAV?0 Trans. 13.3 24.5 29.5
SCRL! Trans. 16.4 26.2 30.6
DETReg!? Trans. 15.9 26.1 30.9
Supervised Conv. - 194 24.7
SoCo*13 Conv. - 26.8 311
ProSeCo (Ours) ~ Trans. 18.0 28.8 32.8

10 Mathilde Caron et al. “Unsupervised learning of visual features by contrasting cluster assignments”. In: Neur/PS. 2020

1 Byungseok Roh et al. “Spatially consistent representation learning”. In: CVPR. 2021.

12 Amir Bar et al. “Detreg: Unsupervised pretraining with region priors for object detection”. In: CVPR. 2022.

13 Fangyun Wei et al. “Aligning pretraining for detection via object-level contrastive learning”. In: Ne

Q. Bouniot
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Finetuning on other datasets
Experimental Results

Pretraining FSOD-test FSOD-train PASCALVOC Mini-VOC

100% (11k) 100% (42k)  100% (16k) 5% (0.8k) 10% (1.6k)
Supervised 39.3 42.6 59.5 33.9 40.8
DETReg!* 43.2 43.3 63.5 43.1 48.2
ProSeCo (Ours) 46.6 47.2 65.1 46.1 51.3

v Improvements of about 2 points over SOTA on all datasets considered.

14 Amir Bar et al. “Detreg: Unsupervised pretraining with region priors for object detection”. .
Q. Bouniot On FAL and Non-linearity 44/61



Take Home Message i

We propose ProSeCo, a Proposal-Contrastive Pretraining strategy for Object Detection
with Transformers.?®

v Leverage high number of Object Proposals for Proposal-Contrastive Learning.
v" Our ProSeCo improves performance when training with limited labeled data.
v Consistency with object-level features is important for Object Detection.

v Location information helps for Proposal-Contrastive learning.

15Quent—in Bouniot, Romaric Audigier, et al. “Proposal-Contrastive Pretraining for Object Detection from Fewer Data”.
Q. Bouniot On FAL and Non-linearity
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Outline

a Understanding Deep Neural Networks Through the Lens of their Non-Linearity
@ Quantifying Non-linearity
@ Journey through DNNs History
@ Additional Results
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Motivations

Non-linearity is at the heart of DNNs
» Universal function approximators thanks to non-linearity.
» Mainly introduced through activation functions.

No such notion of quantifying non-linearity exists in the literature.
» Research mainly focus on quantifying expressive power of DNNs.

Goal: Measure non-linearity from data distribution

Q. Bouniot On FAL and Non-linearity
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Quantifying Non-Linearity

Generalidea

Measure non-linearity as lack of linearity through Optimal Transport (OT)

» We know the closed-form solution of the OT problem for random variables following
normal distributions.

» Forany X andY,if Y = TX with T' PSD, then the solution of OT problem is exactly the
one of their normal approximations.

» We obtain a bound on the difference of the two OT problems.

» We can define the affinity score using this bound.

Q. Bouniot On FAL and Non-linearity 48/61



Quantifying Non-Linearity

Affinity Score
2-Wasserstein distance OT map between normal approximations
| [
o
_ W (TareX,Y)
paff(XaY) =1- - I
V2 Tr| 12

» p.i describes how much Y differs from being a PSD dffine transformation of X.

> 0 < pasr(X,Y) < 1,and page(X,Y) =1 & YV = Ty X.
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Quantifying Non-Linearity

First Examples

Affinity scores over input domain of activation functions

= sigmoid — Oaff =+ baseline — relu — Daff = - baseline = gelu — Oaff = - baseline
1.0 1.25 20 1.25 20 1.25
0.8 1.00 15 1.00 15 1.00
s s s
5 0.6 0.75 k=1 0.75 b= 0.75
s & S — 7] g S1w0q — &
$ 04 0.50 © 0.50 S 0.50
© © 5 © 5
02 0.25 0.25 0.25
0.0 0.00 0 0.00 0 0.00
T T T T T T T T T T T T T T T
-20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20

» X ~ N(u,0o), with p sliding over the domain and multiple o for each p.
» paie(X, f(X)) for popular activation functions f.

» Activation functions can be characterized by the lowest score achieved and the range of
non-linearity.
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Non-linearity signature
Journey through DNNs History

Notations

» Define a neural network N as a composition of layers F;:
N=FL,0..0F .0 Fy =04, 1 Frwhere® stands for a composition.

.....

» Each layer F; is a function F; : R*wxe  Rhxwxe whose outputs F;(X;) are inputs of
the following layer F; ;. Usual F; include convolution, feedforward, pooling or
activation functions.

» Define a finite set of common activation functions A := {o|o : RP*wx¢ — Rhxwxc}
» Let r be a dimensionality reduction function such that r : R#>*wx¢ _ Re¢

Non-linearity signature of N given X:

pait(N: X) = {pae(r(X2), o(r(X:))), Yo € Fs N Ayi € {1,...,L}}
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Early Convnets
Journey through DNNs History

Alexnet (ReLU, std=0.005) Vgg16 (RelU, std=0.008) Vgg19 (RelU, std=0.008)

14 14 1
0.8 0.8 0.8
‘2{:‘! 0.6 % 0.6 n‘:“ 0.6
0.4+ 0.4+ 0.4
0.2+ 0.2+ 0.2

0 T T T T 0 T T T 0 T T T T

1 2 4 5 7 4 8 11 15 1 5 9 13 18

Depth Depth Depth

» Early convnets had tiny variations in non-linearity propagation.

Q. Bouniot
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Deeper Networks
Journey through DNNs History

Resnet34 (RelLU, std=0.010)

Resnetl52 (RelU, std=0.005)

> %e ‘o
ﬁ‘aw\h

£
0.6
QU

1 1
0.8 b4 0.8
S ° ° S
- L] L] L] L] -
$06 o, 0o, 0% gose
0.44 ®e 0.4
0.2 0.2
0-r T T T 0
0 10 20 30
Depth

T T T T T T T
0 25 50 75 100 125 150
Depth

Densenetl61 (RelLU, std=0.020)

14

0.84

0.44

0.24

o

T T
0

T T T T T
25 50 75 100 125 150
Depth

» Different color codes stand for distinct activation functions appearing repeatedly in the

architecture (e.g. every first ReLU in residual blocks for ResNet).

» Deeper networks with residual connections have a shaking effect in their non-linearity

signatures.
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Vision Transformers
Journey through DNNs History

Vit Large 16x16 (GELU, std=0.024) Vit Large 32x32 (GELU, std=0.014) Vit Huge 14x14 (GELU, std=0.013)
1 . 1 1
0.8 ee 0.8 0.8
S0.64 Soede ° 806 ¢
Qa ® Q™ ° Qr e
047 % .'..... 47 ....'..n..l.C.".-... 047 6° oo
024 ®eeq g0® ° 0.2 0.2 '-o.. °
0900000°%%004,,00° o
0 T T T T 0 T T T T 0-— T T T T T
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 25 30
Depth Depth Depth

» Activation functions only present in their MLP blocks.
» Highly non-linear compared to convnets.
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Correlation with Accuracy
Additional Results

Traditional ViTs

Correlation: 0.755 Correlation: -0.96
0.4+

0.3
0.2

Min

0.1
0.0

-0.1

T T T T T T T T T T

60 70 80 90 70 75 80 85 90 95
Accuracy Accuracy

1.0

» We separate architectures into semantically meaningful groups: Traditional
architectures (Alexnet, VGGs, ResNets and DenseNets) and ViTs.

» Confirms shaking effect for traditional models.
» Clear trend toward more non-linearity in ViTs.
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Unique Measure
Additional Results

e Norm:-0.46+0.34 e Sparsity: -0.35+0.43 Entropy: -0.31+0.41 R?:0.08+0.53

e CKA: 0.33+0.47
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tently correlates with the affinity score across 33

architectures used in our test.

ion consis

» No other criter
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Clustering of architectures

Additional Results

—_ |
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» Clustering of the architectures using the pa

non-linearity signatures.
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Take-Home Message lll

Understanding Deep Neural Networks Through the Lens of their Non-Linearity¢

v First theoretical sound tool to measure non-linearity in DNNs

v Different developments in Deep Learning can be understood through the prism of
non-linearity

v/ Variety of potential applications

16 Quentin Bouniot, levgen Redko, Anton Mallasto, et al. “Understanding deep neural networks through the lens of their non-linearity”.
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Outline

e Perspectives
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Perspectives

Towards bridging the gap between MTR theory and Meta-learning in practice.

» Take into account similarity between source and test tasks for cross-domain
generalization.
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Perspectives

Towards bridging the gap between MTR theory and Meta-learning in practice.

» Take into account similarity between source and test tasks for cross-domain
generalization.

Towards leveraging unlabeled data for Object Detection using Transformers.

» Improvements from self- and semi-supervision are less significant than for
convolutional methods. Consider more suited unsupervised tasks ?

Towards efficient adaptation through non-linearity analysis
» Comparing datasets through distance between non-linearity signatures

» Regularization of non-linearity signatures during training.
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Thank you for listening !

Do not hesitate to contact me if you have questions.
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Contributions

[l  Quentin Bouniot, levgen Redko, Romaric Audigier, et al. “Improving Few-Shot
Learning Through Multi-task Representation Learning Theory”. In: ECCV. 2022.

@ Quentin Bouniot, Romaric Audigier, et al. “Proposal-Contrastive Pretraining for
Object Detection from Fewer Data”. In: ICLR. 2023.

[4  Quentin Bouniot, levgen Redko, Anton Mallasto, et al. “Understanding deep neural
networks through the lens of their non-linearity”. In: arXiv preprint arXiv:2310.11439
(2023).
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Experimental Results

Target Domains:
(Disjoint Label Spaces)

Source Domain:

1-shot

mmm= ProtoNet + norm

mm— ProtoNet
0.58
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Q
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Guo et al., “A Broader Study of Cross-Domain Few-Shot Learning”
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Accuracy
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x Improvement does not translate to cross-domain for metric-based methods.
v Gradient-based methods keep their accuracy gains.
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Few-Shot Learning Setting

Background in Object Detection

How do object detectors handle data scarcity ?

Method Arch. Mini-COCO

0.5% (590) 1% (1.2k) 5% (5.9k) 10% (11.8k)
FCOsY’ Conv. 542+0.01 843+0.03 17.014+0.01 20.98-+0.01
FRCNN + FPN'®8  Conv. 6.83+0.15 9.05+0.16 1847 +0.22 23.86+0.81
Def. DETRY? Trans. 8.95+0.51 1296 +0.08 23.59 +0.21 28.55+ 0.08

» Performance on COCO with different percentages of labeled training data.
» Def. DETR stronger than FRCNN + FPN and FCOS with fewer labeled data.

17 7hi Tian et al. “Feos: Fully convolutional one-stage object detection”.

18 Shaoging Ren et al. “Faster r-cnn: Towards real-time object detection with region proposal networks”. ; Tsung-Yi Lin et al. “Feature pyramid networks for object
detection”.

19 Xizhou Zhu et al. “Deformable DETR: Deformable Transformers for End-to-End Object Detection”.
Q. Bouniot On FAL and Non-linearity
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Object Detection 101
Background in Object Detection

Transformer-based methods (e.g., DETR2°)

Detection Heads

_________________

Transformer . —> Cls
Backbone Encoder- .
Decoder ' L Loc

................

» Simpler overall architecture, without hand-crafted heuristics.
» Increasingly popular architecture and strong performance with few data.

20\jicolas Carion et al. “End-to-end object detection with transformers”. 3
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Classical Contrastive Learning
Unsupervised Pretraining for Object Detection with Fewer Annotation

R
N
/ : u Push closer
’#:' )
@’
\ .

i ) M Push away
LN
= K

» Push closer positive examples and push away negative examples.

Features

—
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Ablation Studies

v Consistency in the features improves performance
v' Location of proposals helps for introducing easy positives for contrastive learning

Q. Bouniot

Pretraining Dataset mAP
ProSeCow/ SWAV COCO 274
ProSeCo w/ SWAV IN 27.8
DETRegw/ SCRL IN 28.0
ProSeCow/ SCRL IN 28.8

Loss 1) mAP
SCE 1.0 261
LocSCE (Ours) 0.2 27.0
LocSCE (Ours) 0.7 27.1
LocSCE (Ours) 0.5 27.8

» Dataset diversity more important than closeness to downstream task
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Quantifying Non-Linearity

Dimensionality reduction

Affinity scores are robust to dimensionality reduction

0.95
sigmoid: 0.91£.001
0.90 [ ] [ ] [ ]
0.85
) tanh: 0.81+.001
080 @ b
hardtanh: 0.78+.002
So7s
0.70 hardswish: 0.7+. 002
) [ ] o silu: 0.68+. 002
0.65 ° leakyrelu:0.63:£. 003
[ ] relu, relu6: 0.62%(. 004, .002)
0.60 o 0 o0 gelu: 0.61+.003
0.55
@ &
2 N4 BX

» Manipulating 4-order tensor is computationally expensive
» Averaging over a dimension preserve affinity scores
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Quantifying Non-Linearity

Covariance estimation

Shrinkage of the covariance makes it robust to sample size

sigmoid: 0.95
0.95+ / tanh: 0.9
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d
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hardtanh: 0.78

hardswish: 0.7
silu: 0.67

leakyrelu:0.63
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» Ledoit-Wolfe shrinkage of the covariance gives stable results for affinity scores.

Q. Bouniot
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Deviations between datasets

Additional Results

e CIFAR100: 0.26%0.11 Random: 0.77+0.32

e CIFAR10: 0.28+0.11
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» Deviations to ImageNet of different datasets (CIFAR10, CIFAR100, random data), for

each architecture.

73/61

On FAL and Non-linearity

Q. Bouniot



	Introduction
	Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning
	Meta-Learning 101
	Multi-Task Representation Learning Theory
	From Theory to Practice

	Proposal-Contrastive Pretraining for Object Detection from Fewer Data
	Motivations and Background
	Proposal Selection Contrast (ProSeCo)
	Experimental Results

	Understanding Deep Neural Networks Through the Lens of their Non-Linearity
	Quantifying Non-linearity
	Journey through DNNs History
	Additional Results

	Perspectives
	Contributions
	References
	Appendix

