List ceatech

25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, Milan, Italy 10-15 January 2021

OPTIMAL TRANSPORT AS A DEFENSE AGAINST ADVERSARIAL ATTACKS

Quentin Bouniot, Romaric Audigier, Angélique Loesch

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

ADVERSARIAL EXAMPLES AND PERTURBATION

Original

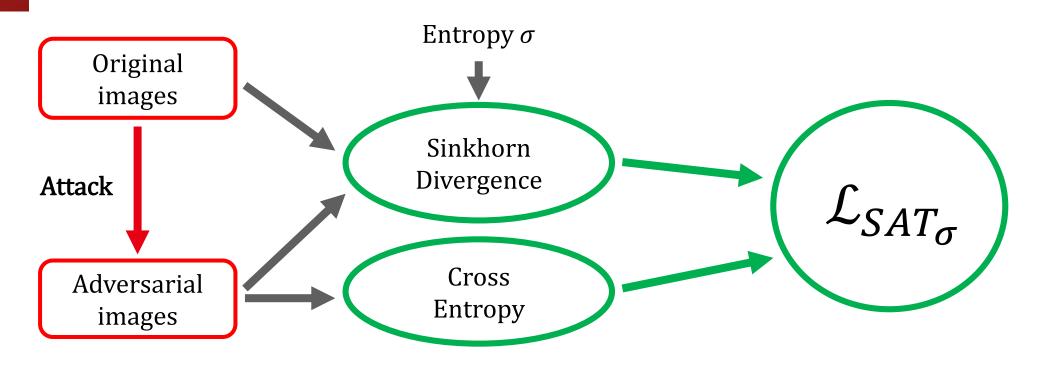
 $\epsilon = 16$

 $\epsilon = 30$

Predictions:

Inputs:

• Adversarial example:


- Human-imperceptible perturbation for a given image to mislead a model.
- Most effective defenses based on adversarial training align *original* and *adversarial* representations.
- Problems:

list

Clatech

- Defenses are *partially* aligning moments of distributions.
- Current evaluation use a *fixed* perturbation size ϵ that can *differ* between papers.

SINKHORN ADVERSARIAL TRAINING (SAT)

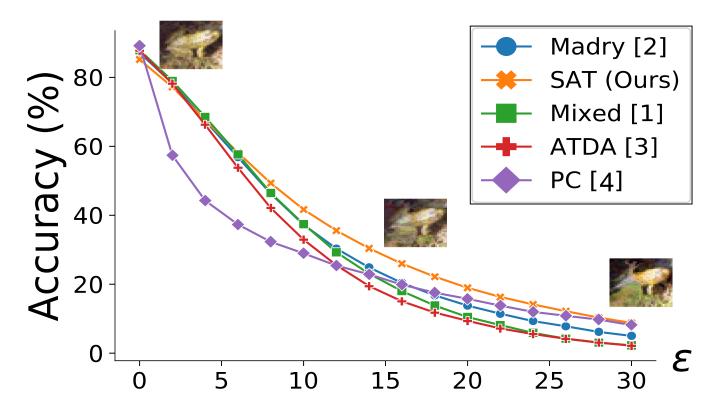
• Sinkhorn Adversarial Training (SAT):

list

Ceatech

• Our defense is based on recent theory of **Optimal Transport** [5] to consider the *whole* distributions and reflect *geometric properties*.

[5] J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouve, and G. Peyré, "*Interpolating Between Optimal Transport and MMD using Sinkhorn Divergences*," in Proceedings of Machine Learning Research (PMLR), 2019.



Q. Bouniot, R. Audigier, A. Loesch | ICPR 2020 | 10-15 January 2021

EXPERIMENTAL RESULTS I

list

Ceatech

- A *fixed* perturbation size does not fully compare robustness.
- Our **SAT** is globally more robust than other SOTA defenses.

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, "*Explaining and harnessing adversarial examples*," in International Conference on Learning Representations (ICLR), 2014.

[2] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, "*Towards deep learning models resistant to adversarial attacks*", in International Conference on Learning Representations (ICLR), 2018.

[3] C. Song, K. He, L. Wang, and J. E. Hopcroft, "*Improving the generalization of adversarial training with domain adaptation*," in International Conference on Learning Representations (ICLR), 2019.
[4] A. Mustafa, S. Khan, M. Hayat, R. Goecke, J. Shen, and L. Shao, "*Adversarial defense by restricting the hidden space of deep neural networks*," in International Conference on Computer Vision (ICCV), 2019.

universite

- Area Under Accuracy Curve (AUAC):
 - A new metric for robustness:

$$AUAC_{\epsilon_{max}}(f) = \frac{1}{\epsilon_{max}} \int_{\epsilon=0}^{\epsilon_{max}} Acc(f,\epsilon, \mathbf{D}^{ts}) d\epsilon$$

 $Acc(f, \epsilon, \mathbf{D}^{ts})$ is the accuracy of f on the test set \mathbf{D}^{ts} with perturbations of size up to ϵ .

- AUAC quantifies more completely robustness to adversarial attacks.
 - Takes into account a wide range of perturbation sizes.

EXPERIMENTAL RESULTS II

list

Clatech

Dataset	Archi.	Model	AUAC (%)	
			$\epsilon_{max} = 16$	$\epsilon_{max} = 30$
CIFAR-10	Resnet20	Non-defended	5.79	3.09
		Madry $[2]$	44.18	26.53
		Mixed $[1]$	40.68	22.73
		ATDA $[3]$	35.58	21.63
		SAT (Ours)	44.26	29.69
	Resnet110	PC [4]	37.89	26.47
	WideResnet28-10	Non-defended	8.8	4.69
		Madry $[2]$	49.37	31.54
		Mixed $[1]$	49.27	30.01
		ATDA $[3]$	46.19	27.94
		SAT (Ours)	51.93	35.12
CIFAR-100	WideResnet28-10	Non-defended	6.03	3.22
		Madry $[2]$	27.27	16.14
		Mixed $[1]$	27.80	16.13
		ATDA [3]	28.59	17.11
		SAT (Ours)	29.69	19.83

Original

 $\epsilon = 16$

 $\epsilon = 30$

universite

- Our **SAT** is the most robust adversarial defense.
- Evaluation also depends on the *attack* considered (see our paper for more examples).
- [1] I. J. Goodfellow, J. Shlens, and C. Szegedy, "*Explaining and harnessing adversarial examples*," in International Conference on Learning Representations (ICLR), 2014.
- [2] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, "*Towards deep learning models resistant to adversarial attacks*", in International Conference on Learning Representations (ICLR), 2018.
- [3] C. Song, K. He, L. Wang, and J. E. Hopcroft, "*Improving the generalization of adversarial training with domain adaptation*," in International Conference on Learning Representations (ICLR), 2019.
- [4] A. Mustafa, S. Khan, M. Hayat, R. Goecke, J. Shen, and L. Shao, "Adversarial defense by restricting the hidden space of deep neural networks," in International Conference on Computer Vision (ICCV), 2019.

- We propose Sinkhorn Adversarial Training (SAT), a defense that *fully* aligns distributions of *original* and *adversarial* representations by using Optimal Transport.
- We propose the Area Under Accuracy Curve (AUAC), a metric of robustness for a *fair* and *exhaustive* evaluation of defenses.
- Our proposed defense is globally more robust than previous methods.

Contact:

https://qbouniot.github.io

quentin.bouniot@cea.fr

25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, Milan, Italy 10-15 January 2021

Quentin Bouniot, Romaric Audigier, Angélique Loesch

Thank you for listening !

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019