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ADVERSARIAL EXAMPLES AND PERTURBATION

Inputs:

Predictions: frog v deer X deer X

* Adversarial example:

* Human-imperceptible perturbation for a given image to mislead a model.
* Most effective defenses based on adversarial training align originaland adversarial representations.

* Problems:

* Defenses are partially aligning moments of distributions.
* Current evaluation use a fixed perturbation size € that can differbetween papers.
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SINKHORN ADVERSARIAL TRAINING (SAT)
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* Sinkhorn Adversarial Training (SAT):

® Our defense is based on recent theory of Optimal Transport [5] to consider the whole distributions and
reflect geometric properties.

[5] J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouve, and G. Peyré, “Interpolating Between Optimal Transport and MMD using Sinkhorn Divergences,” in Proceedings of Machine Learning Research
(PMLR), 2019.
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EXPERIMENTAL RESULTS |
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* Afixed perturbation size does not fully compare robustness.
°* Our SAT is globally more robust than other SOTA defenses.

[.]. Goodfellow, . Shlens, and C. Szegedy, “ Explaining and harnessing adversarial examples,”in International Conference on Learning Representations (ICLR), 2014.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “ Towards deep learning models resistant to adversarial attacks’,in International Conference on Learning Representations (ICLR), 2018.
C.Song, K. He, L. Wang, and ]. E. Hopcroft, “/Improving the generalization of adversarial training with domain adaptation,” in International Conference on Learning Representations (ICLR), 2019.
A. Mustafa, S. Khan, M. Hayat, R. Goecke, ]. Shen, and L. Shao, “Adversarial defense by restricting the hidden space of deep neural networks,” in International Conference on Computer Vision (ICCV), 2019.
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AREA UNDER ACCURACY CURVE

°* Area Under Accuracy Curve (AUAC):

* A new metric for robustness:

AUAC. _ (f) =

€Emax
f Acc(f,e,D¥)de
€

=0

max

Acc(f, €, D) is the accuracy of f on the test set D* with perturbations of size up to €.

* AUAC quantifies more completely robustness to adversarial attacks.
* Takes into account a wide range of perturbation sizes.
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EXPERIMENTAL RESULTS I

Dataset Archi. Model AUAC (%)
€maz = 16 €mge = 30
Non-defended  5.79 3.09
Madry [2] 44.18 26.53
Resnet20 Mixed [1] 40.68 22.73
ATDA [3] 35.58 21.63
CIFAR-10 SAT (Ours)  44.26 29.69
Resnet 110 PC [4] 37.89 26.47
Non-defended 8.8 4.69
: Madry [2] 49.37 31.54
WideResnet28-10 v 4 1) 49.27 30.01
ATDA [3] 46.19 27.94
SAT (Ours) 51.93 35.12
Non-defended  6.03 3.22
. Madry [2] 27.27 16.14
CIFAR-100 WideResnet28-10 Mixed [1] 97 80 16.13
ATDA [3] 28.59 17.11
SAT (Ours)  29.69 19.83

° Qur SAT is the most robust adversarial defense.
° Evaluation also depends on the attack considered (see our paper for more examples).
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TAKE HOME MESSAGE

°* We propose Sinkhorn Adversarial Training (SAT), a defense that fully aligns distributions of original
and adversarial representations by using Optimal Transport.

°* We propose the Area Under Accuracy Curve (AUAC), a metric of robustness for a fair and
exhaustive evaluation of defenses.

°* Qur proposed defense is globally more robust than previous methods.
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