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Meta-Learning 101

Shared representation𝜙

Matrix 𝐖 of linear
predictors𝐰$ , ∀𝑡 ∈

⟦1,𝑇⟧

Meta-training𝑇	source tasks
𝑛/ samples per 

task

Meta-testing
𝑛0 samples for 
new target task 

𝑇 + 1

Linear predictor
𝐰23/

Goal: Minimize excess risk ER = L(φ∗,w∗
T+1)− L(φ,wT+1),

I True risk L I optimal weights φ∗ I w∗
T+1 ideal target linear predictor.
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Meta-Learning Theory

Assumption 1: Diversity of the source tasks

Optimal predictors W∗ = [w∗
1 , . . . ,w∗

T ] cover all the directions evenly

Assumption 2: Constant classification margin

Norm of {w∗
t }t∈J1,TK should not increase with T

if satisfied, ER(φ,wT+1) ≤ O
(

1
n1T

+ 1
n2

)
[2, 5]

XXX All source and target data are useful to decrease the excess risk
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From Theory to Practice

Ensuring Assumption 1: Add spectral or entropic regularization

Rσ(W) = σmax(W)
σmin(W)

or Hσ(W) = −
∑N

i=1 softmax(σ(W))i · log softmax(σ(W))i

XXX Regularizing with Rσ(W) or Hσ(W) leads to a better coverage of the searched space

Ensuring Assumption 2: Add norm regularization/normalization for linear predictors

XXX Normalizing predictors ensure constant margin that does not change with T
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Illustration

Without regularization

𝑅" ≫ 1
𝜎&'(	𝜎&*+	

Source tasks

Target tasks
𝐖 = [𝐰0,𝐰2,𝐰3]

𝐰0

𝐰2

𝐰3

𝟏/
||𝐰

0||

𝟏/
||𝐰

0|
|

𝟏/
||𝐰

2|
|

𝟏/
||𝐰

2|
|

𝟏/||
𝐰3||

𝟏/||
𝐰3||

××× Linear predictors cover only part of the space or over-specialize to the tasks
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Illustration

With proposed regularization
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Target tasks

XXX Assumption 1 makes sure that linear predictors are complementary
XXX Assumption 2 avoids under- or over-specialization to the tasks
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Experimental results

Tracking the ratio and the norm
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××× Maml [3] does not verify the assumptions
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XXX ProtoNet [4] naturally verifies the assumptions
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Experimental results

Accuracy gap with regularization

Dataset Episodes Maml[3] ProtoNet[4] Baseline[1] Baseline++[1]

Omniglot 20-way 1-shot +3.95∗ +0.33∗ −13.2∗ −7.29∗
20-way 5-shot +1.17∗ +0.01 +0.66∗ −2.24∗

miniImageNet 5-way 1-shot +1.23∗ +0.76∗ +1.52∗ +0.39
5-way 5-shot +1.96∗ +2.03∗ +1.66∗ −0.13

tieredImageNet 5-way 1-shot +1.42∗ +2.10∗ +5.43∗ +0.28
5-way 5-shot +2.66∗ +0.23 +1.92∗ −0.72

XXX Enforcing the assumptions leads to better generalization when not verified naturally
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Conclusions

XXX Practical ways to enforce theoretical assumptions

XXX Some models naturally fulfill them

XXX Our regularization allows to learn faster with better
generalization
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