Putting Theory to Work:
From Learning Bounds to Meta-Learning Algorithms
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Meta-Learning 101
T source tasks - Matrix W of linear
Meta-training .
n, samples per predictors w;, Vt €
task [1,7]

l Shared representation ¢

n, samples for Linear predictor
new target task === Meta-testing Wpay
T+1

Goal: Minimize excess risk ER = L(¢*, Wy ;) — L(¢, Wr 1),

» True risk £ » optimal weights ¢* > wr,, ideal target linear predictor.
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Meta-Learning Theory

Assumption 1: Diversity of the source tasks

Optimal predictors W* = [w;, ..., w5] cover all the directions evenly

Assumption 2: Constant classification margin

Norm of {w} }ic,r] should not increase with T

if satisfied, ER(¢, Wr.1) < O (L

nT

4+ L

N,

)

(2, 5]

v All source and target data are useful to decrease the excess risk
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From Theory to Practice

Ensuring Assumption 1: Add spectral or entropic regularization

Ro (W) = % of  Ho(W) = — SN softmax(c(W)); - log softmax(c(W));

v Regularizing with R, (W) or H, (W) leads to a better coverage of the searched space

Ensuring Assumption 2: Add norm regularization/normalization for linear predictors

v Normalizing predictors ensure constant margin that does not change with T
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Illustration

Without regularization
Source tasks

Target tasks
W = [wy, Wy, 3] wn
& 2
0 -
Omax Omin

Ry > 1

x Linear predictors cover only part of the space or over-specialize to the tasks
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Illustration

With proposed regularization

Source tasks

N ’ e Wy

e, %

D e Target tasks
N\, s

SR W = [wy, wy, ws] <]

wy o2

il S

L2

Ta/iwali W, Omax Omin

h ~

il R,~1
=t

v Assumption 1 makes sure that linear predictors are complementary
v/ Assumption 2 avoids under- or over-specialization to the tasks
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Experimental results

Tracking the ratio and the norm
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x MAML [3] does not verify the assumptions
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v/ PROTONET [4] naturally verifies the assumptions
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Experimental results

Accuracy gap with regularization

Dataset Episodes MAML[3] ~ PROTONET[4]  BASELINE[1]  BASELINE++[1]
Omnielot 20-way 1-shot  +3.95* +0.33* —13.2* —7.29*
g 20-way 5-shot  +1.17* +0.01 +0.66* —2.24%
minilmageNet 5-way 1-shot +1.23* +0.76* +1.52* +0.39
g 5-way 5-shot +1.96* +2.03* +1.66* —0.13
. 5-way 1-shot +1.42* +2.10* +5.43* +0.28
tieredimageNet ¢y sshot 4266 +0.23 +1.92* —0.72

v Enforcing the assumptions leads to better generalization when not verified naturally
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Conclusions

v Practical ways to enforce theoretical assumptions
v" Some models naturally fulfill them

v' Our regularization allows to learn faster with better
generalization
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