Towards Few-Annotation Learning in Computer Vision: Application to Image Classification and Object Detection tasks

Quentin Bouniot

29/03/2023

Jury members:

Céline Hudelot, Professor, CentraleSupélec - Reviewer Nicolas Thome, Professor, Sorbonne University - Reviewer Diane Larlus, Research Scientist, Naver Labs Europe - Examiner Devis Tuia, Associate Professor, EPFL - Examiner David Filliat, Professor, ENSTA Paris - Examiner levgen Redko, Principal Research Scientist, Huawei - Guest Angélique Loesch, Research Scientist, CEA-List - Supervisor Romaric Audigier, Research Scientist, CEA-List - Supervisor Amaury Habrard, Professor, Université Jean-Monnet - Director

A Simple Problem ...

A Simple Problem ...

Who is the painter?

A Simple Problem ... for a Human !

Who is the painter ?

 Human capacity to learn from few examples

- ϕ encoding function parametrized by θ
- ► Linear classifiers w (green line) separate each class

Learning from images

• Learn parameters $\hat{\theta}$ and $\hat{\mathbf{w}}$ minimizing loss function \mathcal{L} given data points \mathbf{x}_i and labels \mathbf{y}_i .

Practical Data Conditions

Expectations

Many-Shot Learning: A lot of data and labels

Practical Data Conditions

Expectations

- Many-Shot Learning: A lot of data and labels
- ▶ But labeling data is costly !

Practical Data Conditions

Expectations

- Many-Shot Learning: A lot of data and labels
- ▶ But labeling data is costly !

Reality

- ► Few Annotation Learning (FAL): A lot of data and few labels
- ► Few Shot Learning (FSL): Few data and labels

Outline

Introduction

Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning

- Meta-Learning 101
- Multi-Task Representation Learning Theory
- Contrib 1: From Theory to Practice¹
- Improving Few-Annotation Learning for Object Detection
 - Background in Object Detection
 - Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation²
 - Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection³

Conclusion and Broader Impacts

¹Quentin Bouniot, levgen Redko, et al. "Improving Few-Shot Learning Through Multi-task Representation Learning Theory". In: ECCV. 2022.

²Quentin Bouniot, Romaric Audigier, et al. "Proposal-Contrastive Pretraining for Object Detection from Fewer Data". In: ICLR. 2023.

³ Quentin Bouniot, Angélique Loesch, et al. "Towards Few-Annotation Learning for Object Detection: Are Transformer-Based Models More Efficient?" In: WACV. 2023.

Outline

Introduction

- Meta-Learning 101
- Multi-Task Representation Learning Theory
- Contrib 1: From Theory to Practice⁴

Improving Few-Annotation Learning for Object Detection

4 Conclusion and Broader Impacts

⁴Quentin Bouniot, levgen Redko, et al. "Improving Few-Shot Learning Through Multi-task Representation Learning Theory". In: ECCV. 2022. Q Bouniot

Terminology Meta-Learning 101

What is Meta-Learning ?

- ► Meta-Training: solve a set of *source tasks*.
- Meta-Testing: use knowledge from meta-training to solve previously unseen tasks more efficiently.

How is it related to Few-Shot Learning?

The Meta-learner learns to learn a new task with few shots.

Introducing episodes

Meta-Learning 101

N-way k-shot episode: task with N different classes and k images for each class.

Meta-Learning Problem Formulation

Meta-Learning 101

Data distributions:

Meta-Learning Problem Formulation

Meta-Learning 101

Data distributions:

Inner-level:

Meta-Learning Problem Formulation

Meta-Learning 101

Data distributions:

Inner-level:

Outer-level:

Q Bouniot

Meta-Learning methods

Meta-Learning 101

Metric-based methods (ProtoNet ⁵)

- ► Support samples for each class *i* fused into **prototypes** c_i.
- Probability distribution using inverse of distances to prototypes.

⁵ Jake Snell, Kevin Swersky, and Richard S. Zemel. "Prototypical Networks for Few-shot Learning". In: NeurIPS. 2017

⁶Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: ICML. 2017

Meta-Learning methods

Meta-Learning 101

Metric-based methods (ProtoNet ⁵)

- ► Support samples for each class *i* fused into **prototypes** c_{*i*}.
- Probability distribution using inverse of distances to prototypes.

Gradient-based methods (MAML⁶)

► End-to-end bi-level optimization through gradient descent.

UNIVERSITÉ JEAN MONNET SAINT-ÉTIENNE

⁵ Jake Snell, Kevin Swersky, and Richard S. Zemel. "Prototypical Networks for Few-shot Learning". In: NeurIPS. 2017

⁶Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: ICML. 2017

Introduction to MTR

Introduction to MTR

Introduction to MTR

Link with Meta-Learning

Important Assumptions

Multi-Task Representation Learning Theory

Assumption 1: Diversity of the source tasks⁷

$$\text{Condition Number } \kappa(\mathbf{W}^*) = \frac{\sigma_{\max}(\mathbf{W}^*)}{\sigma_{\min}(\mathbf{W}^*)} \text{ should not increase with } T.$$

▶ Optimal predictors $\mathbf{W}^* = [\mathbf{w}_1^*, \dots, \mathbf{w}_T^*]$ cover all the directions evenly

⁷Simon S. Du et al. "Few-Shot Learning via Learning the Representation, Provably". In: ICLR. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. "Provable Meta-Learning of Linear Representations". In: arXiv. 2020.

Important Assumptions

Multi-Task Representation Learning Theory

Assumption 1: Diversity of the source tasks⁷

$$\text{Condition Number } \kappa(\mathbf{W}^*) = \frac{\sigma_{\max}(\mathbf{W}^*)}{\sigma_{\min}(\mathbf{W}^*)} \text{ should not increase with } T.$$

▶ Optimal predictors $\mathbf{W}^* = [\mathbf{w}_1^*, \dots, \mathbf{w}_T^*]$ cover all the directions evenly

Assumption 2: Constant classification margin⁷

Norm of predictors $\|\mathbf{w}_t^*\|_{t \in [\![1,T]\!]}$ should not increase with T

⁷Simon S. Du et al. "Few-Shot Learning via Learning the Representation, Provably". In: ICLR. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. "Provable Meta-Learning of Linear Representations". In: arXiv. 2020.

Illustration: Violated Assumptions

Multi-Task Representation Learning Theory

× Linear predictors cover only part of the space or over-specialize to the tasks

Illustration: Satisfied Assumptions

Multi-Task Representation Learning Theory

Assumption 1 makes sure that linear predictors are complementary
Assumption 2 avoids under- or over-specialization to the tasks

Few-Shot Multi-Task Learning Theory

Multi-Task Representation Learning Theory

Few-Shot Learning bound⁸

✓ All source and target data are useful to decrease the bound of excess risk.

✓ Increasing either T or n_1 have an effect on the bound.

⁸Simon S. Du et al. "Few-Shot Learning via Learning the Representation, Provably". In: *ICLR*. 2021; Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. "Provable Meta-Learning of Linear Representations". In: *arXiv*. 2020.

Outline

Introduction

- Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning
 - Meta-Learning 101
 - Multi-Task Representation Learning Theory
 - Contrib 1: From Theory to Practice⁹
- Improving Few-Annotation Learning for Object Detection
- 4 Conclusion and Broader Impacts

⁹Quentin Bouniot, levgen Redko, et al. "Improving Few-Shot Learning Through Multi-task Representation Learning Theory". In: ECCV. 2022. Q Bouniot

What Happens in Practice ?

Contrib 1: From Theory to Practice

Idea:

► Verify assumptions 1 and 2 for meta-learning algorithms.

How?

• Monitor condition number $\kappa(\mathbf{W}_N)$ and norm of the predictors $\|\mathbf{W}_N\|_F$ for the last N tasks

What Happens in Practice ?

Contrib 1: From Theory to Practice

- ✓ **ProtoNet** *naturally verifies* the assumptions
- × MAML does not verify the assumptions

Why Does it Happen?

Contrib 1: From Theory to Practice

Case of **ProtoNet**:

► Theorem (informal)

If all prototypes are normalized, then all **ProtoNet** encoders verify Assumption 1.

Norm minimization is *enough* to obtain well-behaved condition number for ProtoNet.

Why Does it Happen?

Contrib 1: From Theory to Practice

Case of MAML:

► Theorem (informal)

At iteration i, if $\sigma_{\min} = 0$ for last two tasks, then $\kappa(\hat{\mathbf{W}}_2^{i+1}) \ge \kappa(\hat{\mathbf{W}}_2^i)$.

✓ The condition number for MAML can **increase** between iterations.

From Theory to Practice

Contrib 1: From Theory to Practice

Ensuring Assumption 1: Spectral regularization

$$\kappa(\mathbf{W}_N) = rac{\sigma_{\max}(\mathbf{W}_N)}{\sigma_{\min}(\mathbf{W}_N)}$$

✓ Regularizing with κ (**W**_N) leads to a better coverage of the searched space

From Theory to Practice

Contrib 1: From Theory to Practice

Ensuring Assumption 1: Spectral regularization

$$\kappa(\mathbf{W}_N) = rac{\sigma_{\max}(\mathbf{W}_N)}{\sigma_{\min}(\mathbf{W}_N)}$$

✓ Regularizing with $\kappa(\mathbf{W}_N)$ leads to a better coverage of the searched space

Ensuring Assumption 2: Norm regularization or normalization for linear predictors

 \checkmark Normalizing predictors ensure constant margin that does not change with T

Experimental Results

UNIVERSITÉ IEAN MONNET SAINT-ÉTIENNE

Contrib 1: From Theory to Practice

Experiments on mini-ImageNet 5-way 1-shot

Experimental Results

Contrib 1: From Theory to Practice

Experiments on mini-ImageNet 5-way 1-shot

✓ Our **regularization** and **normalization** have the intended effects.

Experimental Results

Contrib 1: From Theory to Practice

- ✓ Statistically significant improvements with our regularization and normalization.
- ✓ Better generalization when the assumptions are not verified naturally.

Take Home Message

5 UNIVERSITÉ SANT-ÉTIENNE Cea list

Contrib 1: From Theory to Practice

Improving Few-Shot Learning Through Multi-Task Representation Learning Theory

- ✓ Connection between Meta-Learning and Multi-Task Representation Learning Theory
- Explaining why some meta-learning methods naturally fulfill theoretical assumptions of the best learning bounds.
- ✓ We prove that it is possible to enforce the assumptions and propose practical ways which leads to significant performance improvements.

Outline

Introduction

2) Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning

Improving Few-Annotation Learning for Object Detection

- Background in Object Detection
- Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation¹⁰
- Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection¹¹

Conclusion and Broader Impacts

¹⁰Quentin Bouniot, Romaric Audigier, et al. "Proposal-Contrastive Pretraining for Object Detection from Fewer Data". In: ICLR. 2023.

¹¹ Quentin Bouniot, Angélique Loesch, et al. "Towards Few-Annotation Learning for Object Detection: Are Transformer-Based Models More Efficient?" In: WACV. 2023.

Object Detectors in a Nutshell

Background in Object Detection

- ► Detectors composed of **backbone model** and **detection-specific heads**.
- ▶ Predict class (Cls) and location (Loc) for each objects in an image.

Object Detection 101

5 SAINT-ÉTIENNE Cea list

Background in Object Detection

Transformer-based methods (e.g., DETR¹²)

► Simpler overall architecture, without hand-crafted heuristics.

► Increasingly popular architecture and strong performance with few data.

¹²Nicolas Carion et al. "End-to-end object detection with transformers". In: ECCV. 2020.

Few-Shot Learning Setting

Background in Object Detection

How do object detectors handle data scarcity ?

Method	Arch.	Mini-COCO				
		0.5% (590)	1% (1.2k)	5% (5.9k)	10% (11.8k)	
FCOS ¹³ FRCNN + FPN ¹⁴ Def. DETR ¹⁵	Conv. Conv. Trans.	$\begin{array}{c} 5.42 \pm 0.01 \\ 6.83 \pm 0.15 \\ \textbf{8.95} \pm \textbf{0.51} \end{array}$	$\begin{array}{c} 8.43 \pm 0.03 \\ 9.05 \pm 0.16 \\ \textbf{12.96} \pm \textbf{0.08} \end{array}$	$\begin{array}{c} 17.01 \pm 0.01 \\ 18.47 \pm 0.22 \\ \textbf{23.59} \pm \textbf{0.21} \end{array}$	$\begin{array}{c} 20.98 \pm 0.01 \\ 23.86 \pm 0.81 \\ \textbf{28.55} \pm \textbf{0.08} \end{array}$	

▶ Performance on COCO with different percentages of labeled training data.

► Def. DETR stronger than FRCNN + FPN and FCOS with fewer labeled data.

¹³Zhi Tian et al. "Fcos: Fully convolutional one-stage object detection". In: *ICCV*. 2019.

¹⁴ Shaoqing Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks". In: NeurIPS. 2015; Tsung-Yi Lin et al. "Feature pyramid networks for object detection". In: CVPR. 2017.

¹⁵Xizhou Zhu et al. "Deformable DETR: Deformable Transformers for End-to-End Object Detection". In: ICLR. 2021.

Outline

Introduction

2 Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning

Improving Few-Annotation Learning for Object Detection
 Background in Object Detection

• Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation¹⁶

- Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection¹⁷
- Conclusion and Broader Impacts

¹⁶Quentin Bouniot, Romaric Audigier, et al. "Proposal-Contrastive Pretraining for Object Detection from Fewer Data". In: ICLR. 2023.

^{1/} Quentin Bouniot, Angélique Loesch, et al. "Towards Few-Annotation Learning for Object Detection: Are Transformer-Based Models More Efficient?" In: WACV. 2023

Setting considered

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Unsupervised Supervised Pretraining Fine-Tuning

Pretraining in Object Detection

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Overall Pretraining

Transformer-based Detectors

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

▶ Transformer-based detectors generates N proposals $\gg k$ objects in images.

Transformer-based Detectors

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

▶ Transformer-based detectors generates N proposals $\gg k$ objects in images.

Contribution: Contrastive learning between proposals.

Classical Contrastive Learning

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Features

▶ Push closer positive examples and push away negative examples.

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Object Proposals from Teacher are matched with Predictions from Student.

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Unsupervised Proposal Matching

 $\hat{\sigma}_{i}^{\text{prop}} = \arg\min_{\sigma \in \mathfrak{S}_{N}} \sum_{j=1}^{N} \mathcal{L}_{\text{prop}_match}(\mathbf{y}_{(i,j)}, \hat{\mathbf{y}}_{(i,\sigma(j))})$ $\uparrow \text{Permutations of } N \text{ elements} \qquad \uparrow \text{Object Predictions}$

▶ Proposal *j* found by the teacher associated to prediction $\hat{\sigma}_i^{\text{prop}}(j)$ of the student.

Object Proposals

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Unsupervised Proposal Matching

$$\hat{\sigma}_{i}^{\mathsf{prop}} = \arg\min_{\sigma \in \mathfrak{S}_{N}} \sum_{j=1}^{N} \mathcal{L}_{\mathsf{prop}_\mathsf{match}}(\mathbf{y}_{(i,j)}, \hat{\mathbf{y}}_{(i,\sigma(j))})$$

$$\uparrow \mathsf{Permutations of } N \text{ elements} \qquad \uparrow \mathsf{Object Predictions}$$

▶ Proposal *j* found by the teacher associated to prediction $\hat{\sigma}_i^{\text{prop}}(j)$ of the student.

Matching Cost $\mathcal{L}_{\text{prop}_\text{match}}$ depends on:

► features similarity

 \blacktriangleright L_1 loss of box coordinates

generalized IoU loss

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Naive way

× Close proposals considered as negative examples.

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Localization-aware Contrastive loss

Strong view IOU Z 8 Weak view

✓ Overlapping proposals are considered as positive examples.

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Soft Contrastive Estimation (SCE) loss function¹⁸

$$p'_{(in,jm)} = \frac{\mathbb{1}_{i \neq n} \mathbb{1}_{j \neq m} \exp(\mathbf{z}_{(i,j)} \cdot \mathbf{z}_{(n,m)} / \tau_t)}{\sum_{k=1}^{N_b} \sum_{l=1}^{N} \mathbb{1}_{i \neq k} \mathbb{1}_{j \neq l} \exp(\mathbf{z}_{(i,j)} \cdot \mathbf{z}_{(k,l)} / \tau_t)}$$
Features of Object Proposals

¹⁸ Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023. Q Bouniot

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Soft Contrastive Estimation (SCE) loss function¹⁸

$$p'_{(in,jm)} = \frac{\mathbb{1}_{i \neq n} \mathbb{1}_{j \neq m} \exp(\mathbf{z}_{(i,j)} \cdot \mathbf{z}_{(n,m)} / \tau_t)}{\sum_{k=1}^{N_b} \sum_{l=1}^{N} \mathbb{1}_{i \neq k} \mathbb{1}_{j \neq l} \exp(\mathbf{z}_{(i,j)} \cdot \mathbf{z}_{(k,l)} / \tau_t)}$$
Features of Object Proposals

¹⁸ Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023.

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Localization-aware similarity distribution

$$w_{(in,jm)}^{\mathsf{Loc}} = \lambda_{\mathsf{SCE}} \cdot \mathbb{1}_{i=n} \mathbb{1}_{IoU_i(j,m) \ge \delta} + (1 - \lambda_{\mathsf{SCE}}) \cdot p'_{(in,jm)}$$

$$\uparrow \mathsf{IoU} \text{ between proposals in same image above threshold } \delta$$

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Localization-aware similarity distribution

$$w_{(in,jm)}^{\mathsf{Loc}} = \lambda_{\mathsf{SCE}} \cdot \mathbb{1}_{i=n} \mathbb{1}_{IoU_i(j,m) \ge \delta} + (1 - \lambda_{\mathsf{SCE}}) \cdot p'_{(in,jm)}$$

$$\uparrow \text{IoU between proposals in same image above threshold } \delta$$

Localized SCE (LocSCE) function

$$\mathcal{L}_{\text{LocSCE}}(\mathbf{y}, \hat{\mathbf{y}}, \hat{\sigma}^{\text{prop}}) = -\frac{1}{N_b N} \sum_{i=1}^{N_b} \sum_{n=1}^{N_b} \sum_{j=1}^{N} \sum_{m=1}^{N} w_{(in,jm)}^{\text{Loc}} \log(p_{(in,j\hat{\sigma}_n^{\text{prop}}(m))}')$$

$$\underline{\text{Effective batch size}}$$

Avoiding Collapse

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

19 Jasper RR Uijlings et al. "Selective search for object recognition". In: IJCV. 2013.

Proposal Selection Contrast (ProSeCo)

► Full pretraining procedure with both contrastive and localization learning.

Experimental Results

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Pretraining	Arch	Mini-COCO			
	7 11 01 11	1% (1.2k)	5% (5.9k)	10% (11.8k)	
Supervised	Trans.	13.0	23.6	28.6	
SwAV ²⁰	Trans.	13.3	24.5	29.5	
SCRL ²¹	Trans.	16.4	26.2	30.6	
DETReg ²²	Trans.	15.9	26.1	30.9	
Supervised	Conv.	_	19.4	24.7	
SoCo ^{*23}	Conv.	-	26.8	31.1	
ProSeCo (Ours)	Trans.	18.0	28.8	32.8	

Pretraining on ImageNet, finetuning on Mini-COCO

²⁰Mathilde Caron et al. "Unsupervised learning of visual features by contrasting cluster assignments". In: NeurIPS. 2020.

²¹Byungseok Roh et al. "Spatially consistent representation learning". In: CVPR. 2021.

²²Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022.

²³Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: NeurIPS. 2021.

Experimental Results

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

Finetuning on other datasets

Pretraining	FSOD-test	FSOD-train PASCAL VOC		Mini-VOC	
	100% (11k)	100% (42k)	100% (16k)	5% (0.8k)	10% (1.6k)
Supervised	39.3	42.6	59.5	33.9	40.8
DETReg ²⁴	43.2	43.3	63.5	43.1	48.2
ProSeCo (Ours)	46.6	47.2	65.1	46.1	51.3

✓ Improvements of about **2 points over SOTA** on all datasets considered.

²⁴ Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022. Q Bouniot

Take Home Message

Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation

We propose ProSeCo, a Proposal-Contrastive Pretraining strategy for Object Detection with Transformers.

- ✓ Leverage high number of Object Proposals for **Proposal-Contrastive Learning**.
- ✓ Our **ProSeCo improves performance** when training with limited labeled data.
- ✓ **Consistency** with object-level features is important for Object Detection.
- ✓ Location information helps for Proposal-Contrastive learning.

Outline

Introduction

2 Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning

Improving Few-Annotation Learning for Object Detection

- Background in Object Detection
- Contrib 2: Unsupervised Pretraining for Object Detection with Fewer Annotation²⁵
- Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection²⁶

Conclusion and Broader Impacts

3

²⁵ Quentin Bouniot, Romaric Audigier, et al. "Proposal-Contrastive Pretraining for Object Detection from Fewer Data". In: ICLR. 2023.

²⁶ Quentin Bouniot, Angélique Loesch, et al. "Towards Few-Annotation Learning for Object Detection: Are Transformer-Based Models More Efficient?" In: WACV. 2023.

Setting considered

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Semi-Supervised Learning

Few-Annotation Learning Setting

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

How do object detectors handle label scarcity ?

▶ Performance on COCO with 1% labeled training data.

► Unbiased Teacher (UBT)²⁷ with Def. DETR **does not converge**.

²⁷ Yen-Cheng Liu et al. "Unbiased Teacher for Semi-Supervised Object Detection". In: ICLR. 2021.

Few-Annotation Learning Setting

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

How do object detectors handle label scarcity ?

- ▶ Performance on COCO with 1% labeled training data.
- ► Unbiased Teacher (UBT)²⁸ with Def. DETR **does not converge**.

²⁸Yen-Cheng Liu et al. "Unbiased Teacher for Semi-Supervised Object Detection". In: ICLR. 2021.

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Supervised branch

► Supervised training of the student model with supervised Hungarian algorithm.

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Unsupervised branch

- ► Teacher model provides **pseudo-label** for Student model.
- <u>Difference with ProSeCo</u>: Reusing class information + supervised information.

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Semi-supervised Learning with Momentum-Teaching DETR (MT-DETR)

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Semi-supervised Learning with Momentum-Teaching DETR (MT-DETR)
Hard vs Soft Pseudo-labeling

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Hard Pseudo-labeling

- × Encourage high confidence predictions
- × Focus on **prevailing** class
- × Additional hyperparameter with the threshold

Hard vs Soft Pseudo-labeling

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Hard Pseudo-labeling

- × Encourage high confidence predictions
- × Focus on prevailing class
- × Additional hyperparameter with the threshold

Soft Pseudo-labeling

- Preserves relations between classes
- More diversity in prevailing class

Performance Comparison with State of the Art

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Method	Arch.	FAL-COCO			
		0.5% (590)	1% (1180)	5% (5900)	10% (11800)
FRCNN + FPN	Conv.	$\textbf{6.83} \pm \textbf{0.15}$	$\textbf{9.05} \pm \textbf{0.16}$	18.47 ± 0.22	$\textbf{23.86} \pm \textbf{0.81}$
STAC ²⁹	Conv.	$\textbf{9.78} \pm \textbf{0.53}$	$\textbf{13.97} \pm \textbf{0.35}$	$\textbf{24.38} \pm \textbf{0.12}$	$\textbf{28.64} \pm \textbf{0.21}$
Instant-Teaching ³⁰	Conv.	-	$\textbf{18.05} \pm \textbf{0.15}$	$\textbf{26.75} \pm \textbf{0.05}$	$\textbf{30.40} \pm \textbf{0.05}$
Humble Teacher ³¹	Conv.	-	$\textbf{16.96} \pm \textbf{0.38}$	$\textbf{27.70} \pm \textbf{0.15}$	$\textbf{31.61} \pm \textbf{0.28}$
Unbiased Teacher ³²	Conv.	$\textbf{16.94} \pm \textbf{0.23}$	$\textbf{20.75} \pm \textbf{0.12}$	$\textbf{28.27} \pm \textbf{0.11}$	$\textbf{31.50} \pm \textbf{0.10}$
Soft Teacher ³³	Conv.	-	$\textbf{20.46} \pm \textbf{0.39}$	$\textbf{30.74} \pm \textbf{0.08}$	$\textbf{34.04} \pm \textbf{0.14}$
Def. DETR MT-DETR (Ours)	Trans. Trans.	$\begin{array}{c} 8.95 \pm 0.51 \\ \textbf{17.84} \pm 0.54 \end{array}$	$\begin{array}{c} 12.96\pm0.08\\ \textbf{22.03}\pm0.17\end{array}$	$\begin{array}{c} \textbf{23.59} \pm \textbf{0.21} \\ \textbf{31.00} \pm \textbf{0.11} \end{array}$	$\begin{array}{c} 28.55 \pm 0.08 \\ \textbf{34.52} \pm 0.07 \end{array}$

²⁹ Kihyuk Sohn et al. "A simple semi-supervised learning framework for object detection". In: *arXiv*. 2020.

³⁰Qiang Zhou et al. "Instant-teaching: An end-to-end semi-supervised object detection framework". In: CVPR. 2021.

³¹Yihe Tang et al. "Humble teachers teach better students for semi-supervised object detection". In: CVPR. 2021.

³²Yen-Cheng Liu et al. "Unbiased Teacher for Semi-Supervised Object Detection". In: ICLR. 2021.

³³ Mengde Xu et al. "End-to-end semi-supervised object detection with soft teacher". In: ICCV. 2021.

Performance Comparison with State of the Art

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Method	Arch	FAL-VOC 07-12			
in centre	, a en.	5% (250)	10% (500)	100% (5000)	
FRCNN + FPN	Conv.	$\textbf{18.47} \pm \textbf{0.39}$	$\textbf{25.23} \pm \textbf{0.22}$	42.13	
STAC ³⁴	Conv.	-	-	44.64	
Instant-Teaching ³⁵	Conv.	-	-	50.00	
Humble Teacher ³⁶	Conv.	-	-	53.04	
Unbiased Teacher ³⁷	Conv.	$\textbf{35.98} \pm \textbf{0.71}$	$\textbf{40.34} \pm \textbf{0.95}$	54.61	
Def. DETR MT-DETR (Ours)	Trans. Trans.	$\begin{array}{c} 22.87 \pm 0.38 \\ \textbf{36.95} \pm 0.53 \end{array}$	$\begin{array}{c} \textbf{29.03} \pm \textbf{0.46} \\ \textbf{43.15} \pm \textbf{1.10} \end{array}$	51.34 56.2	

- ✓ We achieve the **best performance** on all settings
- More significant gap when labeled data is scarce
- ✓ Ablation study to find the **best combination** of training hyperparameters.

³⁴Kihyuk Sohn et al. "A simple semi-supervised learning framework for object detection". In: *arXiv*. 2020.

³⁵Qiang Zhou et al. "Instant-teaching: An end-to-end semi-supervised object detection framework". In: CVPR. 2021.

³⁶Yihe Tang et al. "Humble teachers teach better students for semi-supervised object detection". In: CVPR. 2021.

³⁷Yen-Cheng Liu et al. "Unbiased Teacher for Semi-Supervised Object Detection". In: ICLR. 2021.

Take Home Message

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Leverage few annotated data and unlabeled data for strong object detectors.

- ► Experiments with transformer-based detector with scarce labeled data
 - Better than convolutional detector when labels are limited
 - × **Do not work** with previous semi-supervised methods
- ► Our proposed MT-DETR:
 - MT-DETR is a semi-supervised approach for Transformer-based detectors
 - Outperforms state-of-the-art semi-supervised object detectors in few-annotation learning

Outline

Introduction

- 2 Improving Few-Shot Classification with Meta-Learning through Multi-Task Learning
- 3 Improving Few-Annotation Learning for Object Detection

Conclusion and Broader Impacts

- <u>Contribution 1</u>: Improving Meta-Learning algorithms through Multi-Task Representation Learning theory.³⁸
- <u>Contribution 2</u>: ProSeCo, a Proposal-Contrastive Pretraining strategy for Object Detection with Transformers.³⁹
- <u>Contribution 3</u>: MT-DETR, first semi-supervised approach tailored for Transformer-based detectors.⁴⁰

³⁸ Quentin Bouniot, levgen Redko, et al. "Improving Few-Shot Learning Through Multi-task Representation Learning Theory". In: ECCV. 2022.

³⁹ Quentin Bouniot, Romaric Audigier, et al. "Proposal-Contrastive Pretraining for Object Detection from Fewer Data". In: ICLR. 2023.

⁴⁰ Quentin Bouniot, Angélique Loesch, et al. "Towards Few-Annotation Learning for Object Detection: Are Transformer-Based Models More Efficient?" In: WACV. 2023.

Perspectives

Towards bridging the gap between MTR theory and Meta-learning in practice.

► Take into account similarity between source and test tasks for *cross-domain* generalization.

Perspectives

Towards bridging the gap between MTR theory and Meta-learning in practice.

► Take into account similarity between source and test tasks for *cross-domain* generalization.

Towards leveraging unlabeled data for Object Detection using Transformers.

- ► Update the backbone during pretraining to further improve consistency.
- Improvements from self- and semi-supervision are less significant than for convolutional methods. Consider *more suited* unsupervised tasks ?

Broader Impacts

Computational Costs

- ► Few annotations does not imply few computations !
- Meta-learning is computationally expensive because of episodic training and bilevel optimization.
- ► Learning with unlabeled data requires a large number of training iterations.

Broader Impacts

Computational Costs

- ► Few annotations does not imply few computations !
- Meta-learning is computationally expensive because of episodic training and bilevel optimization.
- ► Learning with unlabeled data requires a large number of training iterations.

Environmental Costs

- ► A lot of computations implies a high carbon footprint !
- ► But can reduce costly annotation phases for large-scale datasets: about 12 tCO2eq for annotating COCO dataset !
- ► For comparison: 4.6 tCO2eq for all experiments in this thesis (about 180 000 GPU hours), 4 tCO2eq for a round trip to Hawaii.

Broader Impacts

Computational Costs

- ► Few annotations does not imply few computations !
- Meta-learning is computationally expensive because of episodic training and bilevel optimization.
- ► Learning with unlabeled data requires a large number of training iterations.

Environmental Costs

- ► A lot of computations implies a high carbon footprint !
- ► But can reduce costly annotation phases for large-scale datasets: about 12 tCO2eq for annotating COCO dataset !
- ► For comparison: 4.6 tCO2eq for all experiments in this thesis (about 180 000 GPU hours), 4 tCO2eq for a round trip to Hawaii.

Accessibility

- ► Reduces the need for labels !
- ► Can be crucial for a lot of applications.

Thank you for listening !

International publications:

- ► Quentin Bouniot, levgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard. "Improving Few-Shot Learning through Multi-task Representation Learning Theory". In ECCV, 2022.
- ► Quentin Bouniot, Angélique Loesch, Romaric Audigier, Amaury Habrard. "Towards Few-Annotation Learning for Object Detection: Are Transformer-based Models More Efficient ?". In WACV, 2023.
- ► Quentin Bouniot, Romaric Audigier, Angélique Loesch, Amaury Habrard. "Proposal-Contrastive Pretraining for Object Detection from Fewer Data". In *ICLR*, 2023.

Workshops and communications:

- ► Quentin Bouniot, levgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard. "Putting Theory to Work : From Learning Bounds to Meta-Learning Algorithms". In *NeurIPS Workshop on Meta-Learning (MetaLearn)*, 2020.
- ► Quentin Bouniot, levgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard. "Vers une meilleure compréhension des méthodes de méta-apprentissage à travers la théorie de l'apprentissage de représentations multi-tâches". In *CAp*, 2021.
- ► Quentin Bouniot, levgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard. "Improving Few-Shot Learning through Multi-task Representation Learning Theory". In *GdR ISIS*, 2021.
- ▶ Quentin Bouniot & levgen Redko, "Understanding Few-Shot Multi-Task Representation Learning Theory". In *ICLR Blog Track*, 2022.

- Quentin Bouniot, levgen Redko, et al. "Improving Few-Shot Learning Through Multi-task Representation Learning Theory". In: ECCV. 2022.
- Quentin Bouniot, Romaric Audigier, et al. "Proposal-Contrastive Pretraining for Object Detection from Fewer Data". In: *ICLR*. 2023.
- Quentin Bouniot, Angélique Loesch, et al. "Towards Few-Annotation Learning for Object Detection: Are Transformer-Based Models More Efficient?" In: WACV. 2023.

References I

- Jake Snell, Kevin Swersky, and Richard S. Zemel. "Prototypical Networks for Few-shot Learning". In: *NeurIPS*. 2017.
- Chelsea Finn, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: *ICML*. 2017.
- Simon S. Du et al. "Few-Shot Learning via Learning the Representation, Provably". In: *ICLR*. 2021.
- Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. "Provable Meta-Learning of Linear Representations". In: *arXiv*. 2020.
- Nicolas Carion et al. "End-to-end object detection with transformers". In: ECCV. 2020.
- Zhi Tian et al. "Fcos: Fully convolutional one-stage object detection". In: ICCV. 2019.
- Shaoqing Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks". In: *NeurIPS*. 2015.
- Tsung-Yi Lin et al. "Feature pyramid networks for object detection". In: CVPR. 2017.

References II

- Xizhou Zhu et al. "Deformable DETR: Deformable Transformers for End-to-End Object Detection". In: *ICLR*. 2021.
- Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023.
- Jasper RR Uijlings et al. "Selective search for object recognition". In: IJCV. 2013.
- Mathilde Caron et al. "Unsupervised learning of visual features by contrasting cluster assignments". In: *NeurIPS*. 2020.
- Byungseok Roh et al. "Spatially consistent representation learning". In: CVPR. 2021.
- Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022.
- Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: *NeurIPS*. 2021.

References III

- Yen-Cheng Liu et al. "Unbiased Teacher for Semi-Supervised Object Detection". In: *ICLR*. 2021.
- Kihyuk Sohn et al. "A simple semi-supervised learning framework for object detection". In: *arXiv*. 2020.
- Qiang Zhou et al. "Instant-teaching: An end-to-end semi-supervised object detection framework". In: CVPR. 2021.
- Yihe Tang et al. "Humble teachers teach better students for semi-supervised object detection". In: CVPR. 2021.
- Mengde Xu et al. "End-to-end semi-supervised object detection with soft teacher". In: *ICCV*. 2021.
- Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. "The Benefit of Multitask Representation Learning". In: *JMLR*. 2016.
- Haoxiang Wang, Han Zhao, and Bo Li. "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation". In: *ICML*. 2021.

- Yunhui Guo et al. "A Broader Study of Cross-Domain Few-Shot Learning". In: ECCV. 2020.
- Joseph Redmon et al. "You only look once: Unified, real-time object detection". In: *CVPR*. 2016.

Appendix

Episodic Training

- ▶ Disjoint sets of classes between meta-training and meta-testing classes.
- ► Construction of *episodes* from dataset.

Multi-Task Representation Learning Theory

Traditional PAC-bounds⁴¹

$$\mathsf{ER}(\phi, \mathbf{w}_{T+1}) \le O\left(\frac{1}{n_1} + \frac{1}{T}\right)$$

- × Requires n_1 and T to tend to infinity.
- × Doesn't explain the success in *few data regime*.

⁴¹ Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. "The Benefit of Multitask Representation Learning". In: JMLR. 2016. Q Bouniot

Multi-task training \neq Episodic training

Mismatch in problem formulation and objectives

But shared optimization formulation, with some simplification

► The differences are empirically negligible⁴²

⁴² Haoxiang Wang, Han Zhao, and Bo Li. "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation". In: ICML. 2021. Q Bouniot

Can we force the assumptions ?

Given \mathbf{W}^* such that $\kappa(\mathbf{W}^*) \gg 1$, can we learn $\hat{\mathbf{W}}$ with $\kappa(\hat{\mathbf{W}}) \approx 1$ while solving the underlying classification problems equally well?

✓ Even when W^* does not satisfy the assumptions, it is possible to learn $\hat{\phi}$ to respect them.

1-shot

Guo et al., "A Broader Study of Cross-Domain Few-Shot Learning"

Guo et al., "A Broader Study of Cross-Domain Few-Shot Learning"

- × Improvement does not translate to cross-domain for metric-based methods.
- Gradient-based methods keep their accuracy gains.

Object Detection 101

Two-stage methods (e.g., Faster-RCNN⁴³)

- ► First stage proposes candidate object bounding boxes (proposals).
- ► Second stage refines each proposal.

⁴³Shaoqing Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks". In: NeurIPS. 2015. Q Bouniot

Object Detection 101

One-stage methods (e.g., YOLO⁴⁴**)**

- ▶ Classification and localization in a single shot using a dense sampling.
- ▶ Predefined anchors or reference points are refined for localization.
- ► Simpler design, real-time inference speed but lower performance.

⁴⁴ Joseph Redmon et al. "You only look once: Unified, real-time object detection". In: CVPR. 2016.

Backbone Pretraining

× Image-level pretraining task

Backbone Pretraining

× Image-level pretraining task

✓ Object-level pretraining task

Backbone Pretraining

× Pretraining limited to the **backbone**

Ablation Studies

Pretraining	Dataset	mAP
ProSeCo w/ SwAV	COCO	27.4
ProSeCo w/ SwAV	IN	27.8
DETReg w/ SCRL	IN	28.0
ProSeCo w/ SCRL	IN	28.8

Loss	δ	mAP
SCE	1.0	26.1
LocSCE (Ours)	0.2	27.0
LocSCE (Ours)	0.7	27.1
LocSCE (Ours)	0.5	27.8

- ► Comparisons on Mini-COCO 5%
- ► Dataset diversity more important than closeness to downstream task
- ✓ Consistency in the features improves performance
- ✓ Location of proposals helps for introducing easy positives for contrastive learning

Semi-Supervised Object Detection

Unbiased Teacher (UBT)⁴⁵

- ▶ Burn-in stage: Teacher model trained on labeled data.
- ▶ Weak and strong augmentations for unlabeled data.
- ► Teacher provides pseudo-labels for student model.
- Teacher updated with Exponential Moving Average (EMA).

⁴⁵Yen-Cheng Liu et al. "Unbiased Teacher for Semi-Supervised Object Detection". In: ICLR. 2021.
Ablation Studies

Name	Augmentations			
Basic	Horizontal Flip	Augmentations used	mAP (in %)	
	Resize	Basic + Photo.	17.8	
Photo.	Color Jitter	Basic + Photo. + CutOut	Div	
	Gaussian Blur	w/o NMS + Soft PL (Ours)	21.1	
CutOut	CutOut	Basic + Photo. + CutOut + Geom.	21.6	
Geom.	Rotate Shear	Basic + Photo. + CutOut + Geom. + Augmentations in Supervised branch	22.3	
	Rescale + Pad			

Adding more augmentations leads to the best results

Removing post-processing of proposals solves the diverging issue

⁴⁶Liu et al., "Unbiased Teacher for Semi-Supervised Object Detection".

Ablation Studies

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Augmentations used	mAP (in %)
Basic + Photo.	17.8
Basic + Photo. + CutOut	
w/ NMS + Hard PL ⁴⁷	Div.
w/o NMS + Soft PL (Ours)	21.1
Basic + Photo. + CutOut + Geom.	21.6
Basic + Photo. + CutOut + Geom. + Augmentations in Supervised branch	22.3

- ✓ Adding more augmentations leads to the best results
- Removing post-processing of proposals solves the diverging issue

⁴⁷ Yen-Cheng Liu et al. "Unbiased Teacher for Semi-Supervised Object Detection". In: ICLR. 2021.

Ablation Studies

Contrib 3: Few Annotation Learning for Semi-Supervised Object Detection

Ablative Variant	EMA Scheduling		Initialization		NMS	Confidence Thresholding				mAP (in %)
	Cosine	Constant	After FT	From scratch	141415	ø	0.5	0.7	0.9	
Best	\checkmark		\checkmark			\checkmark				22.25
Abl. Sched.		\checkmark	\checkmark			\checkmark				21.48
Abl. Init.	\checkmark			\checkmark		\checkmark				16.51
Abl. NMS	\checkmark		\checkmark		\checkmark	\checkmark				19.85
	\checkmark		 				\checkmark			10.26
Abl. Thresh.	\checkmark		\checkmark					\checkmark	\checkmark	17.34 12.37

Best combination found:

- ✓ Cosine scheduling
- Initialization after fine-tuning
- ✓ No post-processing of pseudo-labels

Method	Pretrain	FAL-COCO					
	rictian.	0.5% (590)	1% (1180)	5% (5900)	10% (11800)		
Supervised	Sup.	$\textbf{8.95} \pm \textbf{0.51}$	$\textbf{12.96} \pm \textbf{0.08}$	$\textbf{23.59} \pm \textbf{0.21}$	$\textbf{28.55} \pm \textbf{0.08}$		
Supervised	ProSeCo	$\textbf{11.37} \pm \textbf{0.40}$	$\textbf{17.90} \pm \textbf{0.08}$	$\textbf{28.33} \pm \textbf{0.33}$	$\textbf{32.60} \pm \textbf{0.28}$		
MT-DETR (Ours)	Sup.	$\textbf{17.84} \pm 0.54$	$\textbf{22.03} \pm 0.17$	$\textbf{31.00}\pm0.11$	$\textbf{34.52}\pm0.07$		
MT-DETR (Ours)	ProSeCo	$\textbf{14.33} \pm \textbf{0.17}$	$\textbf{21.73} \pm \textbf{0.12}$	$\textbf{32.00} \pm 0.16$	$\textbf{35.83}\pm0.17$		

► Our ProSeCo also improves performance with MT-DETR.

► However less effective with very few labels.

Environmental Footprint of this Thesis

Carbon emissions come from electricity required for running experiments.

- ► About 150 000 GPU hours (17 years) on CEA HPC cluster.
- ► About 30 000 GPU hours (3.5 years) on Jean-Zay HPC cluster.
- ► Assuming 400Wh for CEA HPC cluster, 259Wh ⁴⁸ for Jean-Zay, with an emission of 68 gCO2eq/kWh.
- ► Total of about 4.6 tons of CO2eq.

And going to conferences:

- ▶ 1.1 (ECCV) + 3.9 (WACV) + 2.4 (ICLR incoming)
- ► Total of about 7.4 tons of CO2eq
- But important to meet other researchers in the domain and better experience than virtual !

Overall of 12 tons of CO2eq, equivalent to the annotation of the whole COCO dataset !

⁴⁸http://www.idris.fr/media/jean-zay/jean-zay-conso-heure-calcul.pdf